Chứng minh rằng (sin a)/(1 + cos a) + (1 + cos a)/(sin a) = 2/(sin a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosa.sina=\frac{1}{5}\Rightarrow\frac{cosa.sina}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)
\(\Rightarrow\frac{cosa}{sina}=\frac{1}{5}+\frac{1}{5}.\frac{cos^2a}{sin^2a}\)
\(\Rightarrow cota=\frac{1}{5}+\frac{1}{5}cot^2a\)
\(\Rightarrow cot^2a-5cota+1=0\)
\(\Rightarrow cota=\frac{5\pm\sqrt{21}}{2}\)
Câu 2:
\(\frac{cosa}{1-sina}=\frac{cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa\left(1+sina\right)}{1-sin^2a}=\frac{cosa\left(1+sina\right)}{cos^2a}=\frac{1+sina}{cosa}\)
b/
\(\frac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}\)
\(=\frac{sin^2a+cos^2a+2sina.cosa-\left(sin^2a+cos^2a-2sina.cosa\right)}{sina.cosa}\)
\(=\frac{4sina.cosa}{sina.cosa}\)
\(=4\)
1) Vì \(\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{đối}{huyền}}{\dfrac{kề}{huyền}}=\dfrac{đối}{kề}\)
nên \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
2) Vì \(\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{\dfrac{kề}{huyền}}{\dfrac{đối}{huyền}}=\dfrac{kề}{đối}\)
nên \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
\(sinA.cosB.cosC+sinB.cosC.cosA+sinC.cosB.cosA\)
\(=cosC\left(sinA.cosB+cosA.sinB\right)+sinC.cosB.cosA\)
\(=cosC.sin\left(A+B\right)+sinC.cosB.cosA\)
\(=cosC.sinC+sinC.cosA.cosB\)
\(=sinC\left(cosC+cosA.cosB\right)=sinC\left(-cos\left(A+B\right)+cosA.cosB\right)\)
\(=sinC\left(-cosA.cosB+sinA.sinB+cosA.cosB\right)\)
\(=sinA.sinB.sinC\)
a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).
\(\frac{cos\left(a-b\right)}{sin\left(a+b\right)}=\frac{cosa.cosb+sina.sinb}{sina.cosb+cosa.sinb}=\frac{\frac{cosa.cosb}{sina.sinb}+1}{\frac{sina.cosb}{sina.sinb}+\frac{cosa.sinb}{sina.sinb}}=\frac{cota.cotb+1}{cota+cotb}\)
Bạn ghi đề ko đúng
\(sin\left(a+b\right)sin\left(a-b\right)=\frac{1}{2}\left[cos2b-cos2a\right]\)
\(=\frac{1}{2}\left[1-2sin^2b-1+2sin^2a\right]\)
\(=sin^2a-sin^2b\)
\(=1-cos^2a-1+cos^2b=cos^2b-cos^2a\)
Câu này bạn cũng ghi đề ko đúng
\(cos\left(a+b\right)cos\left(a-b\right)=\frac{1}{2}\left[cos2a+cos2b\right]\)
\(=\frac{1}{2}\left[2cos^2a-1+1-2sin^2b\right]=cos^2a-sin^2b\)
\(=1-sin^2a-1+cos^2b=cos^2b-sin^2a\)
a) ta có : \(\left(1-cosa\right)\left(1+cosa\right)=1-cos^2a=sin^2a\left(đpcm\right)\)
b) ta có : \(1+sin^2a+cos^2a=1+1=2\left(đpcm\right)\)
c) ta có : \(sina-sina.cos^2a=sina\left(1-cos^2a\right)=sina.sin^2a=sin^3a\left(đpcm\right)\)
d) đề thiếu
\(VT=\dfrac{sin\alpha}{1+cos\alpha}+\dfrac{1+cos\alpha}{sin\alpha}\)
\(=\dfrac{sin^2\alpha+\left(1+cos\alpha\right)^2}{sin\alpha\left(1+cos\alpha\right)}\)
\(=\dfrac{sin^2\alpha+1+2cos\alpha+cos^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{\left(sin^2\alpha+cos^2\alpha\right)+1+2cos\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{2+2cos\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{2\left(1+cos\alpha\right)}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{2}{sin\alpha}=VP\left(dpcm\right)\)