K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2023

\(2+4+6+...+2x+\left(2x+2\right)=10050\)

\(\Rightarrow2\left(1+2+3+...+x+x+1\right)=10050\)

\(\Rightarrow1+2+3+...+x+x+1=10050:2\)

\(\Rightarrow1+2+3+...+s+x+1=5025\)

\(\Rightarrow\dfrac{x.\left(x+1\right)}{2}=5025\)

\(\Rightarrow x.\left(x+1\right)=5025.2\)

\(\Rightarrow x.\left(x+1\right)=10050\)

Mà 10050 không bằng tích của 2 số tự nhiên liên tiếp 

\(\Rightarrow\) không tồn tại số tự nhiên x thỏa mãn

Mình ko chắc lắm đâu nhé :)

25 tháng 10 2019

(2x + 1) + (2x + 2) + (2x + 3) + ... + (2x + 100) = 10050

=> (2x + 2x + .... + 2x) + (1 + 2 + ... + 100) = 10050

=> 100 . 2x + 5050 = 10050

=> 200x = 5000

=> x = 25

Q=x^6+x^5+x^5+x^4+x^4+x^3+x^3+x^2+x^2+x+x+1

=x^4(x^2+x)+x^3(x^2+x)+x^2(x^2+x)+x(x^2+x)+1+x+1

=x^4+x^3+x^2+x+x+2

=x^4+x^3+x^2+2x+2

=x^2(x^2+x)+x^2+x+x+2

=x^2+1+x+2

=x^2+x+3

=1+3

=4

14 tháng 10 2021

 

1.(2x+3).(x-5)+2x(3-x)+x-10

=2x^2 -10x+3x-15+6x-2x^2+x-10

=2x-25

2.(-x-2)3+(2x-4).(x2+2x+4)-x2.(x-6)

=-x^3+6x^2-12x-8+2x^3+4x^2+8x-4x^2+8x-16-x^3+6x^2

14 tháng 10 2021

bổ sung câu 2 tiếp là

=12x^2 + 4x-24

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349

4 tháng 2 2018

Ta có:

Q= \(x^2.\left(x^4+2x^3+x^2\right)+\left(x^4+2x^3+x^2\right)+x^2+x+x+1\)

\(=x^2.\left(x^2+x\right)^2+\left(x^2+x\right)^2+x+2\)

\(=x^2+x+3=4\)

Vậy Q=4

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(2+x\right)}{2x^2+4x+3x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(2x+3\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{2-x}{2x+3}=\dfrac{2-\left(-2\right)}{2\cdot\left(-2\right)+3}=\dfrac{4}{-4+3}=-4\)

b: \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x+4\right)\left(x^2-4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{x^3+64}\)

\(=\dfrac{\left(4-4\right)\left(2\cdot4-5\right)}{4^3+64}=0\)

c: \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x^2+2x+6x+6}{-2x^2-2x+9x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{-2x\left(x+1\right)+9\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{\left(x+1\right)\left(-2x+9\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x+6}{-2x+9}=\dfrac{2\cdot\left(-1\right)+6}{-2\cdot\left(-1\right)+9}\)

\(=\dfrac{4}{11}\)

25 tháng 12 2018

a) M = -195.                   b) N = 81.