tính nhanh nhất có thể
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{19}{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
đặt \(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
\(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{18}}-\frac{1}{3^{19}}\)
\(4A=1-\frac{1}{3^{20}}\)
\(A=\frac{1-\frac{1}{3^{20}}}{4}\)
\(M=1+\frac{1-\frac{1}{3^{20}}}{4}=\frac{5-\frac{1}{3^{20}}}{4}\)
Ta có : 1:M=1+3-3^2+3^3-3^4+....+3^19-3^20
1/M=(1+3^2+3^4+....3^20)-(3+3^3+..+3^19)
1/M=[(3^20-1)/8]-[(3^21-3)/8]
1/M=[3^20-3^21+(-2)]/8
Bạn tự làm tiếp nhé
[ 19/20 x 3/4 + 1/20 x 3/4 ] x [ 1/2 x 3/4 -2/4 x 3/4 ]
=[ 3/4 x [19/20 + 1/20 ] x [3/4 x [2/4 - 1/2]
=[ 3/4 x 1 ] x [3/4 x 0 ]
=0
\(\left(\frac{19}{20}.\frac{3}{4}+\frac{1}{20}.\frac{3}{4}\right).\left(\frac{1}{2}.\frac{3}{4}-\frac{2}{4}.\frac{3}{4}\right)\)
\(=\left(\frac{19}{20}.\frac{3}{4}+\frac{1}{20}.\frac{3}{4}\right).\left(\frac{1}{2}.\frac{3}{4}-\frac{1}{2}.\frac{3}{4}\right)\)
\(=\left(\frac{19}{20}.\frac{3}{4}+\frac{1}{20}.\frac{3}{4}\right).0\)
\(=0\)
a) \(1\frac{3}{19}+\frac{8}{21}-\frac{3}{19}+0.5+\frac{13}{21}\)
\(=\left(1\frac{3}{19}-\frac{3}{19}\right)+\left(\frac{8}{21}+\frac{13}{21}\right)+0.5\)
\(=1+1+0.5=2.5\)
b) \(\left(-\frac{3}{4}+\frac{2}{7}\right):\frac{3}{7}+\left(\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\left(\frac{-3}{4}+\frac{2}{7}+\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=0:\frac{3}{7}=0\)
* Cách làm : Tử giữ nguyên,còn mẫu ta biến đổi như sau:
Mẫu : ( \(\frac{19}{1}\)+ 1 ) + ( \(\frac{18}{2}\)+ 1 ) + ( \(\frac{17}{3}\)+ 1 ) +...+ ( \(\frac{3}{17}\)+ 1 ) + ( \(\frac{2}{18}\)+ 1 ) + ( \(\frac{1}{19}\)+ 1 ) - 19 ( vì ta cộng với 19 số 1 nên phải trừ 19 )
= \(\frac{20}{1}\)+ \(\frac{20}{2}\)+ \(\frac{20}{3}\)+...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)- 19
= \(\frac{20}{2}\)+ \(\frac{20}{3}\)+...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)+ ( \(\frac{20}{1}\)- 19)
= \(\frac{20}{2}\)+ \(\frac{20}{3}\)+ ...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)+ \(\frac{20}{20}\)
= 20.( \(\frac{1}{2}\)+ \(\frac{1}{3}\)+...+ \(\frac{1}{17}\)+ \(\frac{1}{18}\)+ \(\frac{1}{19}\)+ \(\frac{1}{20}\))
=> \(\frac{Tử}{Mâu}\)= \(\frac{1}{20}\)
Phùng Quang Thịnh biến đổi sai 1 chỗ kìa
-19 = \(\frac{20}{20}-20\)chứ mà bạn
Tử số = T = \(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+....+\frac{18}{2}+\frac{19}{1}\)
\(=\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+\left(\frac{3}{17}+1\right)+....+\left(\frac{19}{1}+1\right)-19\)
\(=\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+....+\frac{20}{2}+20-19\)
\(=\frac{20}{2}+\frac{20}{3}+....+\frac{20}{18}+\frac{20}{19}+\frac{20}{20}\)
\(=20\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)
= 20.Mẫu số
\(\Rightarrow\frac{\frac{1}{19}+\frac{2}{18}+....+\frac{18}{2}+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{19}+\frac{1}{20}}=20\)
Mẫu số = 1/19 + 2/18 + 3/17 + ... + 18/2 + 19/1
= ( 1/19 + 2/18 + 3/17 + ... + 18/2 ) + ( 1 + 1 + ... + 1 )
( 18 phân số ) ( 19 số 1 )
= ( 1/19 + 1 ) + ( 2/18 + 1) + ( 3/17 +1 ) + ...+ ( 18/2 + 1 ) + 1
= 20/19 + 20/18 + 20/17 + ... + 20/2 + 20/20
= 20 x ( 1/2 + 1/3 + ... + 1/19 + 1/20 )
Vậy phân số trên= 20
Mẫu số = 1/19 + 2/18 + 3/17 + ... + 18/2 + 19/1
= ( 1/19 + 2/18 + 3/17 + ... + 18/2 ) + ( 1 + 1 + ... + 1 )
( 18 phân số ) ( 19 số 1 )
= ( 1/19 + 1 ) + ( 2/18 + 1) + ( 3/17 +1 ) + ...+ ( 18/2 + 1 ) + 1
= 20/19 + 20/18 + 20/17 + ... + 20/2 + 20/20
= 20 x ( 1/2 + 1/3 + ... + 1/19 + 1/20 )
Vậy phân số trên= 20
ta có
tử số \(\frac{1}{19}+\frac{2}{18}+..+\frac{18}{2}+\frac{18}{1}=\frac{1}{19}+1+\frac{2}{18}+1+..+\frac{18}{2}+1\)
\(\frac{20}{19}+\frac{20}{18}+..+\frac{20}{2}=20\left(\frac{1}{19}+\frac{1}{18}+..+\frac{1}{2}\right)\)
Do đó ta có phân số trên bằng 20
a)|-10|:(-2):(-5)+(-3)2
=1+9
=10
b)1+(-2)+3+(-4)+5+(-6)+...+21+(-22)
=[1+(-2)]+[3+(-4)]+[5+(-6)]+...+[21+(-22]
=(-1)+(-1)+(-1)+...+(-1)
Mà từ 1 đến 22 có:(22-1):1+1:2=11(cặp)
Suy ra:1+(-2)+3+(-4)+5+(-6)+...+21+(-22)=(-11)
c)\(\frac{3}{4}.\frac{5}{9}+\frac{3}{4}.\frac{4}{9}\)
\(=\frac{3}{4}.\left(\frac{5}{9}+\frac{4}{9}\right)\)
\(=\frac{3}{4}\)
d)\(-\frac{4}{17}+\frac{5}{19}+-\frac{13}{17}+\frac{14}{19}+\frac{3}{115}\)
\(=\left[\left(-\frac{4}{17}\right)+\left(-\frac{13}{17}\right)\right]+\left(\frac{5}{19}+\frac{4}{19}\right)+\frac{3}{115}\)
\(=\left(-\frac{27}{17}\right)+1+\frac{3}{115}\)
\(=-\frac{1099}{1955}\)
e)\(\left(\frac{3}{4}+-\frac{7}{2}\right).\left(\frac{10}{11}+\frac{2}{22}\right)\)
\(=\left(\frac{3}{4}-\frac{14}{4}\right).\left(\frac{20}{22}+\frac{2}{22}\right)\)
\(=\left(-\frac{11}{4}\right).\left(\frac{22}{22}\right)\)
\(=-\frac{11}{4}\)