K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

a) ACB^ = ECN^ (đđ)

Mà ACB^ = ABC^ (do ABC cân)

=> ABC^ = ECN^

Xét BDM và CEN :

BDM^ = CEN^ = 90o

BD = CE

ABC^ = CEN^

=> BDM = CEN (cạnh góc vuông_ góc nhọn)

=> DM = EN (2 cạnh tương ứng)

mk chỉ biết làm phần a thôi

4 tháng 3 2022

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

5 tháng 3 2022

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.

14 tháng 2 2016

Nhanh lên,mình cần gấp

2 tháng 3 2021

answer-reply-image

14 tháng 2 2022

 

sai r

goc m bang goc n thi moi la ch.gn

8 tháng 2 2020

Tgiac ABC cân tại A => AB = AC và góc B = ACB

Mà góc ACB và góc NCE là 2 góc đối đỉnh => góc ACB = NCE

=> góc NCE = góc B

Xét tgiac MDB và NEC có:

+ góc MDB = NEC

+ BD = CE

+ góc B = NCE (cmt)

=> tgiac MDB = NEC (cgv-gn)

=> MD = NE

2 tháng 3 2019

a, xét tam giác MDB và tam giác NEC có:

                     BD=CE(gt)

 vì \(\widehat{B}\)=\(\widehat{ACB}\)\(\widehat{ACB}\)=\(\widehat{ECN}\)nên\(\widehat{B}\)=\(\widehat{ECN}\)

        \(\Rightarrow\)tam giác MDB=tam giác NEC(CH-GN)

          \(\Rightarrow\)MD=NE

28 tháng 2 2016

Mk chỉ cần vẽ hình thôi