K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Vì \(Ox \bot Oy\) tại \(O\)nên tam giác \(AOB\) và tam giác \(AOC\) đều vuông tại \(O\).

Ta có: \(OA = 3;OB = 3;OC = 3\)

\(BC = OB + OC = 3 + 3 = 6\).

Áp dụng định lí Py – ta – go cho tam giác \(AOB\) ta có:

\(O{A^2} + O{B^2} = A{B^2}\)

\( \Leftrightarrow {3^2} + {3^2} = A{B^2}\)

\( \Leftrightarrow A{B^2} = 9 + 9 = 18\)

\( \Leftrightarrow AB = \sqrt {18}  = 3\sqrt 2 \)

Áp dụng định lí Py – ta – go cho tam giác \(AOC\) ta có:

\(O{A^2} + O{C^2} = A{C^2}\)

\( \Leftrightarrow {3^2} + {3^2} = A{C^2}\)

\( \Leftrightarrow A{C^2} = 9 + 9 = 18\)

\( \Leftrightarrow AC = \sqrt {18}  = 3\sqrt 2 \)

Chu vi tam giác \(ABC\) là:

\(C = AB + AC + BC = 3\sqrt 2  + 3\sqrt 2  + 6 = 6 + 6\sqrt 2 \) (đơn vị độ dài)

Vì \(Ox \bot Oy\) nên \(OA\) vuông góc với \(BC\) tại \(O\). Do đó, \(OA\) là đường cao  tam giác \(ABC\) ứng với cạnh \(BC\).

Diện tích tam giác \(ABC\) là:

\(S = \dfrac{1}{2}OA.BC = \dfrac{1}{2}.3.6 = 9\) (đơn vị diện tích)

Vậy chu vi tam giác \(ABC\) là \(6 + 6\sqrt 2 \) đơn vị độ dài và diện tích tam giác \(ABC\) là 9 đơn vị diện tích. 

12 tháng 9 2023

- Vẽ đồ thị hàm số \(y = x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{1} =  - 3\) ta được điểm \(B\left( { - 3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(B\).

- Vẽ đồ thị hàm số \(y =  - x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{{ - 1}} = 3\) ta được điểm \(C\left( {3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y =  - x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(C\).

Từ đồ thị ta thấy giao điểm của hai đường thẳng là \(A\left( {0;3} \right)\).

Đường thẳng \({d_1}\) cắt trục \(Ox\) tại \(B\left( { - 3;0} \right)\).

Đường thẳng \({d_2}\) cắt trục \(Oy\) tại \(C\left( {3;0} \right)\).

12 tháng 9 2023

Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).

Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).

15 tháng 12 2023

Bạn nhập lại hai hàm số đó nhé chính giữa mik không biết là dấu + hay - 

22 tháng 10 2021

a, Bạn tự vẽ

b, PT hoành độ giao điểm (d1) và (d3) là 

\(x=-x+3\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=\dfrac{3}{2}\Leftrightarrow A\left(\dfrac{3}{2};\dfrac{3}{2}\right)\Leftrightarrow OA=\sqrt{\left(\dfrac{3}{2}-0\right)^2+\left(\dfrac{3}{2}-0\right)^2}=\dfrac{3\sqrt{2}}{2}\)

PT hoành độ giao điểm (d2) và (d3) là 

\(2x=-x+3\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\Leftrightarrow OB=\sqrt{\left(1-0\right)^2+\left(2-0\right)^2}=\sqrt{5}\)

Ta có \(AB=\sqrt{\left(\dfrac{3}{2}-1\right)^2+\left(\dfrac{3}{2}-2\right)^2}=\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}=\dfrac{\sqrt{2}}{2}\)

Ta có \(OA^2+AB^2=\dfrac{9}{2}+\dfrac{1}{2}=\dfrac{10}{2}=5=OB^2\) nên tg OAB vuông tại A

Do đó \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot AB=\dfrac{1}{2}\cdot\dfrac{3\sqrt{2}}{2}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{3}{4}\left(đvdt\right)\)

b) Phương trình hoành độ giao điểm là:

x+1=-x+3

\(\Leftrightarrow2x=2\)

hay x=1

Thay x=1 vào y=x+1, ta được:

y=1+1=2

Vậy: C(1;2)

Thay y=0 vào y=x+1, ta được:

x+1=0

hay x=-1

Vậy: A(-1;0)

Thay y=0 vào y=3-x, ta được:

3-x=0

hay x=3

Vậy: B(3;0)

b) Phương trình hoành độ giao điểm là:

x+1=-x+3

\(\Leftrightarrow2x=2\)

hay x=1

Thay x=1 vào y=x+1, ta được:

y=1+1=2

Vậy: C(1;2)

Thay y=0 vào y=x+1, ta được:

x+1=0

hay x=-1

Vậy: A(-1;0)

Thay y=0 vào y=3-x, ta được:

3-x=0

hay x=3

Vậy: B(3;0)

 

19 tháng 11 2019

a) - Với hàm số y = x + 1:

    Cho x = 0 => y = 1 ta được M(0; 1).

    Cho y = 0 => x + 1 = 0 => x = -1 ta được B(-1; 0).

Nối MB ta được đồ thị hàm số y = x + 1.

- Với hàm số y = -x + 3:

    Cho x = 0 => y = 3 ta được E(0; 3).

    Cho y = 0 => -x + 3 = 0 => x = 3 ta được A(3; 0).

Nối EA ta được đồ thị hàm số y = -x + 3.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Từ hình vẽ ta có:

- Đường thẳng y = x + 1 cắt Ox tại B(-1; 0).

- Đường thẳng y = -x + 3 cắt Ox tại A(3; 0).

- Hoành độ giao điểm C của 2 đồ thị hàm số y = x + 1 và y = -x + 3 là nghiệm phương trình:

    x + 1 = -x + 3

=> x = 1 => y = 2

=> Tọa độ C(1; 2)

c) Ta có: AB = 3 + 1 = 4

Để học tốt Toán 9 | Giải bài tập Toán 9