Tìm dư của phép chia 2 mũ 2017 cho 1+2+2 mũ 2+ 2 mũ 3+...+ 2 mũ 2013 + 2 mũ 2014
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Để tìm dư của phép chia 2^2017 cho biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014, chúng ta có thể sử dụng định lý Fermat nhỏ.
Theo định lý Fermat nhỏ, nếu p là một số nguyên tố và a là một số tự nhiên không chia hết cho p, thì a^(p-1) ≡ 1 (mod p).
Trong trường hợp này, chúng ta có p = 2 và a = 2.
Ta biết rằng 2 không chia hết cho 2, vì vậy 2^(2-1) ≡ 1 (mod 2), nghĩa là 2^1 ≡ 1 (mod 2).
Do đó, ta có thể thấy rằng tất cả các mũ 2^k với k >= 1 đều có dư 1 khi chia cho 2.
Vì vậy, biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014 có tổng là 2014 và có dư 0 khi chia cho 2.
Do đó, dư của phép chia 2^2017 cho biểu thức này cũng là 0.