Cho hình vẽ sau
A B C D
CMR:
a,ABC=ADC
b,AC là tia phân giác của \(\widehat{BAD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ ˆBAD=ˆBDA���^=���^ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒ ˆHAD+ˆBDA=90o���^+���^=90�
ΔABC vuông ở A ⇒ ˆDAC=ˆBAD=90o���^=���^=90�
mà ˆBAD=ˆBDA���^=���^
⇒ ˆHAD=ˆDAC���^=���^
⇒ AD là tia phân giác của ˆHAC���^ (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung; ˆHAD=ˆKAD���^=���^
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ ˆBAD=ˆBDA���^=���^ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒ ˆHAD+ˆBDA=90o���^+���^=90�
ΔABC vuông ở A ⇒ ˆDAC=ˆBAD=90o���^=���^=90�
mà ˆBAD=ˆBDA���^=���^
⇒ ˆHAD=ˆDAC���^=���^
⇒ AD là tia phân giác của ˆHAC���^ (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung; ˆHAD=ˆKAD���^=���^
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
C B A D E M 50 50 độ 50 độ 60 độ
a) Ta có: Góc CDE so le trong và bằng góc C => DE//BC (1)
Mặt khác: Góc DAB + Góc CAB = 180 độ ( kề bù )
=> Góc DAB = 180 độ - 80 độ = 100 độ
AM là tia phân giác của góc BAD => Góc DAM = Góc BAM = \(\frac{100^o}{2}=50^o\)
Góc DAM bằng và so le trong với góc ADE ( vì D;A;C thẳng hàng)
=> DE//AM (2)
b) Từ (1) và (2) => BC//AM ( t/c)
2 đội công nhân có 40 người . Đội 1 có 30 người mỗi người của đội 2 trồng được 16 cây . Hỏi mỗi người đội 1 trồng được bao nhiêu cây biết trung bình cả 2 đội mỗi người trồng 12 cây
( làm cả bài giải nửa nha )
Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)
\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)
Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)
Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)
Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)
Vậy ...
Ta có: `Cx////AB=>` \(\left\{{}\begin{matrix}\widehat{BCx}=\widehat{B}\left(\text{so le trong}\right)\\\widehat{DCx}=\widehat{A}\left(\text{đồng vị}\right)\end{matrix}\right.\)
Mà `\hatA=\hatB` (GT)
`=> \hat(BCx)=\hat(DCx)`
`=> Cx` là phân giác `\hat(DCB)`.
Ta có: \(\widehat{DCx}=\widehat{CAB}\)(hai góc đồng vị, Cx//AB)
\(\widehat{BCx}=\widehat{CBA}\)(hai góc so le trong, Cx//AB)
mà \(\widehat{CAB}=\widehat{CBA}\)
nên \(\widehat{DCx}=\widehat{BCx}\)
hay Cx là tia phân giác của \(\widehat{DCB}\)