từ điểm P ngoài (O<R) vẽ hai tiếp tuyến PA và PB đến (O,R) vơus A,B là các tiếp điểm . Gọi H là chân đường vuông góc vẽ từ A đến đường kính BC của đường tròn .AC cắt BP tainh D , CP cắt AH tại I
1) Chứng minh : tam giác APD cân và P là trung điểm của BD
2) chứng minh : I là trung điểm của AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^
Xin lỗi bạn!
Mk mới học lớp 8 thôi ak!
Chúc bạn có câu trả lời sớm nha!
Kb nhá ^_^
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
Gọi H là hình chiếu của O đến đường thẳng d. Khi đó : OH = h không đổi
dễ chứng minh OM \(\perp AB\)tại K
gọi giao điểm của OH với AB là I
Ta có : \(\Delta OKI~\Delta OHM\left(g.g\right)\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OK.OM=OI.OH\)
Áp dụng hệ thức lượng, ta có :
\(OB^2=OK.OM=OH.OI\Rightarrow OI=\frac{OB^2}{OH}=\frac{R^2}{h}\)không đổi ( R là bán kính đường tròn (O) )
vậy AB đi qua điểm I cố định
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
Giả sử có n điểm phân biệt
- Với n = 2, vẽ được 1 góc đỉnh O
- Với n = 3, vẽ được 3 góc đỉnh O \(\left(3=\dfrac{3.2}{2}\right)\)
- Với n = 4, vẽ được 6 góc đỉnh O \(\left(6=\dfrac{4.3}{2}\right)\)
- Với n = 5, vẽ được 10 góc đỉnh O \(\left(10=\dfrac{5.4}{2}\right)\)
\(\Rightarrow\) Với n điểm vẽ được \(\dfrac{n\left(n-1\right)}{2}\) góc đỉnh O
Vậy với 2007 điểm ta vẽ được \(\dfrac{2017.2016}{2}=2013021\) góc đỉnh O.
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
từ điểm P ngoài (O,R) nha mn em nhầm