Tìm số nguyên tố p sao cho 2p+1, 4p+1 cùng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng phương pháp đánh giá em nhá.
Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)
p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)
Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)
p = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)
p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)
Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)
Từ những phân tích trên ta có p = 2; 3
Kết luận: p \(\in\) {2; 3}
Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.
Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.
Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)
Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.
Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.
Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.
b,
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$
$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.
Vậy $p=3$ là đáp án duy nhất.
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))
Thay p=3k+1 vào 2p+1 ta có:
2p+1=2(3k+1)+1=6k+2+1=6k+3
Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)
=> 2p+1 là hợp số (loại)
Thay p=3k+2 vào 2p+1 ta có:
2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)
Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
p và 2p+1 nguyên tố
Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
Xét p chia hết cho 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3
Vì p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2
Với p = 3k+1 => 2p+1 = 2(3k+1) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\) 3 và lớn hơn 3
=> 2p+1 là hợp số (loại)
=> p chỉ có dạng 3k+2
Với p = 3k+2 => 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 \(⋮\) 3 và lớn hơn 3
=> 4p+1 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là một số nguyên tố thì 4p+1 là hợp số.
Gọi d là ƯCLN(2p + 1; 4p + 1)
⇒ 2p + 1 ⋮ d và 4p + 1 ⋮ d
⇒ 2 x (2p + 1) ⋮ d và 4p + 1 ⋮ d
⇒ 4p + 2 ⋮ d và 4p + 1 ⋮ d
⇒ (4p + 2) - (4p + 1) ⋮ d
⇒ 4p + 2 - 4p - 1 ⋮ d
⇒ 2 - 1 ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 2p + 1 và 4p + 1 là 2 số nguyên tố cùng nhau
Dùng phương pháp đánh giá em nhá.
+ Nếu p = 2 ta có: 2p + 1 = 5 (thỏa mãn); 4p + 1 = 9 (loại)
+ Nếu p = 3 ta có: 2p + 1 = 7 (thỏa mãn); 4p + 1 = 13 (thỏa mãn)
+ Nếu p > 3 mà p là số nguyên tố nên p có dạng:
p = 3k + 1; p = 3k + 2 (k \(\in\)N*)
Với p = 3k + 1 ⇒ 2p + 1 = 2.(3k+1) + 1 = 6k+3 ⋮ 3 (loại)
Với p = 3k + 2 ⇒ 4p + 1 = 4.(3k + 2) + 1 = 12k + 9 ⋮ 3(loại)
Từ những phân tích trên ta có: p = 3
Kết luận với p = 3 thì p; 2p + 1; 4p + 1 đồng thời là số nguyên tố.