Cho a= căn2017 - căn2015
b= căn2019 - căn 2017
So sánh a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{\left(2015+2016\right)}{\left(2016+2017\right)}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)
Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)
Mà\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)và\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)
Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)
Vậy A>B
A > B mình chả bít có đúng hay ko
mong các bn nhận xét
Cậu quy đồng lên r so sánh
Còn mún làm thì phải thay số của bài này
Link:
Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath
kết quả nó là :
=> \(\frac{a}{b}\)> \(\frac{a+2001}{b+2001}\)
còn cách làm thì vào trang Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath
A=\(\frac{2017^{2017}+2}{2017^{2017}-1}\)=\(\frac{\left(2017^{2017}-1\right)+3}{2017^{2017}-1}\)=\(1\)+\(\frac{3}{2017^{2017}-1}\)
B=\(\frac{2017^{2017}}{2017^{2017}-3}\)=\(\frac{\left(2017^{2017}-3\right)+3}{2017^{2017}-3}\)=\(1\)+\(\frac{3}{2017^{2017}-3}\)
Vì \(2017^{2017}-1\)\(>\)\(2017^{2017}-3\)nên \(\frac{3}{2017^{2017}-1}\)\(< \)\(\frac{3}{2017^{2017}-3}\)=> A<B
vậy A<B
chúc bạn học giỏi
k giùm mk nhé
ta có a+2017/b+2018 < a+2018/b+2018
so sánh a/b và a+2018/b+2018 ta có
1-a/b=b-a/b
1-a+2018/b+2018=b-a/b+2018 =>a/b>a+2018/b+2018>a+2017/b+2018