GPT
(x-3)(x-5)(x-6)(x-10)=24x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)
\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)
\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)
Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Lời giải:
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow x(\sqrt{x+1}-2)+(x+5)(\sqrt{x+6}-3)=x^2-9\)
\(\Leftrightarrow x.\frac{x-3}{\sqrt{x+1}+2}+(x+5).\frac{x-3}{\sqrt{x+6}+3}-(x-3)(x+3)=0\)
\(\Leftrightarrow (x-3)\left[\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\right]=0\)
Ta sẽ cm pt chỉ có nghiệm $x=3$ bằng cách chỉ ra biểu thức trong ngoặc vuông luôn âm.
Nếu $-1\leq x< 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{3}-(x+3)=\frac{-2(x+4)}{3}< 0\)
Nếu $x\geq 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\leq \frac{x}{2}+\frac{x+5}{3}-(x+3)=\frac{-(x+8)}{6}<0\)
Vậy........
1 )
= (1 + 3+ 5+ .....+2003+2005) \(\times\)( 125 nhân 1001 NHÂN 127 - 127 nhân 1001 nhân 125 )
= (1 + 3+ 5+ .....+2003+2005) \(\times\)0
= 0
Chúc bạn học tốt
Trả lời:
Bài 1
\(\left(1+3+5+...+2003+2005\right)\times\left(125125\times127-127127\times125\right)\)
\(=\left\{\left(2005+1\right)\times\left[\left(2005-1\right)\div2+1\right]\div2\right\}\times\left(125\times1001\times127-127\times1001\times125\right)\)
\(=\left(2006\times1003\div2\right)\times0\)
\(=10061009\times0\)
\(=0\)
Bài 2
\(y-6\div2-\left(48-24\times2\div6-3\right)=0\)
\(y-3-\left(48-8-3\right)=0\)
\(y-3-37=0\)
\(y-40=0\)
\(y=40\)
Vậy \(y=40\)
\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)=24x^2\)
<=>\(\left(x^2-13x+30\right)\left(x^2-11x+30\right)=24x^2\)
Đặt x2-11x+30=t => (t-2x).t=24x2 <=> t2-2xt=24x2 <=> t2-2xt-24x2=0 <=> 4xt-24x2+t2-6xt=0
<=>4x(t-6x)+t(t-6x)=0<=>(t-6x)(4x+t)=0<=>t-6x=0 hoặc 4x+t=0 <=>x2-17x+30=0 hoặc x2-7x+30=0
+)x2-17x+30=0 <=> x2-15x-2x+30=0 <=> x(x-15)-2(x-15)=0 <=> (x-2)(x-5)=0
<=>x-2=0 hoặc x-15=0 <=>x=2 hoặc x=15
+)x2-7x+30=0 <=> \(x^2-2.\frac{7}{2}.x+\frac{49}{4}+\frac{71}{4}=0\Leftrightarrow\left(x-\frac{7}{2}\right)^2+\frac{71}{4}=0\)
Vì \(\left(x-\frac{7}{2}\right)^2\ge0\Rightarrow\left(x-\frac{7}{2}\right)^2+\frac{71}{4}\ge\frac{71}{4}>0\) => vô nghiệm
Vậy x=2 hoặc x=15