Cho A=\(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
Rút gọn A, biết a+b+c=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)
Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\Rightarrow\left\{{}\begin{matrix}bc=-ab-ac\\ab=-bc-ac\\ac=-ab-bc\end{matrix}\right.\)
\(M=\dfrac{1}{a^2+bc-ab-ac}+\dfrac{1}{b^2+ac-ab-bc}+\dfrac{1}{c^2+ab-bc-ac}\)
\(=\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-c\right)-a\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)
\(=\dfrac{1}{\left(a-b\right)\left(a-c\right)}-\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{b-c-\left(a-c\right)+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
Lời giải:
Do \(a+b+c=0\rightarrow b+c=-a\), suy ra:
\(b^2+c^2-a^2=(b+c)^2-a^2-2bc=(-a)^2-a^2-2bc=-2bc\)
\(\Rightarrow \frac{1}{b^2+c^2-a^2}=\frac{1}{-2bc}\)
Tương tự với các phân thức còn lại:
\(\Rightarrow B=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=\frac{-1}{2}.\frac{a+b+c}{abc}=0\)
Vậy \(B=0\)
Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2ab-2bc-2ca\)
Khi đó \(\dfrac{1}{b^2+c^2-a^2}=\dfrac{1}{-2ab-2bc-2ca-2a^2}=\dfrac{1}{-2\left(a+b\right)\left(a+c\right)}\)
Viết lại \(B=-\dfrac{1}{2}\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(b+c\right)\left(a+b\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\)
\(=-\dfrac{1}{2}\cdot\dfrac{b+c+c+a+a+b}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)\(=-\dfrac{1}{2}\cdot\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)
Lời giải:
Từ \(a+b+c=0\Rightarrow a=-(b+c)\)
\(\Rightarrow a^2=[-(b+c)]^2=b^2+2bc+c^2\)
\(\Rightarrow b^2+c^2-a^2=b^2+c^2-(b^2+2bc+c^2)=-2bc\)
\(\Rightarrow \frac{1}{b^2+c^2-a^2}=\frac{1}{-2bc}=\frac{-a}{2abc}\)
Hoàn toàn tương tự với các biểu thức còn lại và cộng theo vế:
\(A=\frac{-a}{2abc}+\frac{-b}{2abc}+\frac{-c}{2abc}=\frac{-(a+b+c)}{2abc}=0\)
ta có
a+b+c =0
<=> a+b=-c
<=>(a+b)2 =(-c)2
<=>a2+b2+2ab=c2
<=>a2+b2-c2=-2ab
tương tự ta đc
c2+a2-b2=-2ac
b2+c2-a2=-2bc
thay vào A ta có
\(A=\dfrac{-1}{2bc}-\dfrac{1}{2ac}-\dfrac{1}{2ab}\)
<=> A=\(\dfrac{-a}{2abc}-\dfrac{b}{2abc}-\dfrac{c}{2abc}\)
<=> A=\(\dfrac{-\left(a+b+c\right)}{2abc}=0\) (vì a+b+c=0)
\(\dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\dfrac{a^2}{\left(a-b\right)\left(-c\right)-c^2}=\dfrac{a^2}{c\left(b-a-c\right)}=\dfrac{a^2}{2bc}\\ \Leftrightarrow M=\sum\dfrac{a^2}{a^2-b^2-c^2}=\sum\dfrac{a^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}\\ \Leftrightarrow M=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2abc}=0\)
Lời giải:
\(a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z}\)
\(A=\frac{\frac{1}{x^2y^2}}{(\frac{1}{x^3}+\frac{1}{y^3}).\frac{1}{z^2}}=\frac{z^2}{x^2y^2.\frac{x^3+y^3}{x^3y^3}}=\frac{z^2}{\frac{x^3+y^3}{xy}}=\frac{xyz^2}{x^3+y^3}\)
\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)
\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
Bài 2:
a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)
Vì \(a+b+c=0\)
Nên a + b = -c (1)
Thay (1) vào A, ta được:
\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)
\(A=\dfrac{1}{abc}.3abc\)
\(A=3\)
b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)
Vì \(a+b+c=0\)
Nên b + c = -a
=> ( b + c )2 = (-a)2
=> b2 + c2 + 2bc = a2
=> b2 + c2 = a2 - 2bc (1)
Tương tự ta có: c2 + a2 = b2 - 2ac (2)
a2 + b2 = c - 2ab (3)
Thay (1), (2) và (3) vào B, ta được:
\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)
\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)
\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)
\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)
Mà \(a^3+b^3+c^3=3abc\) ( câu a )
\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)
\(\Rightarrow B=\dfrac{3}{2}\)
Bài 1:
a) GT: abc = 2
\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)
\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(M=\dfrac{1+b+bc}{bc+b+1}\)
\(M=1\)
b) GT: abc = 1
\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)
\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)
\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(N=\dfrac{1+b+bc}{bc+b+1}\)
\(N=1\)
Ta có: a+b+c=0\(\Leftrightarrow\)b+c=-a
Bình phương hai vế có: (b+c)2=a2
⇔ b2+2bc+c2=a2\(\Leftrightarrow\) b2+c2-a2=-2bc
Tương tự, ta có: c2+a2-b2=-2ca
a2+b2-c2=-2ab
→ A=\(-\dfrac{1}{2bc}-\dfrac{1}{2ca}-\dfrac{1}{2ab}=\dfrac{-\left(a+b+c\right)}{2abc}=0\)(vì a+b+c=0)
Vậy A=0