A=\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+...+\(\frac{1}{3^{100}}\)
Ai giúp mik vs !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x\left(x+1\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
Ta có : `(x-1)/x -1/(x+1) =(2x-1)/(x(x+1))`
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)
`=> x^2 +x -x-1 -x-2x+1=0`
`<=> x^2 -3x =0`
`<=> x(x-3)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\end{matrix}\right.\)
__
`(x+2)(5-3x)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\5-3x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)
__
\(\dfrac{5\left(1-2x\right)}{3}+\dfrac{x}{2}=\dfrac{3\left(x-5\right)}{4}-2\)
\(\Leftrightarrow\dfrac{20\left(1-2x\right)}{12}+\dfrac{6x}{12}=\dfrac{9\left(x-5\right)}{12}-\dfrac{24}{12}\)
`<=> 2x- 40x + 6x = 9x - 45 -24`
`<=> 2x- 40x + 6x-9x + 45 +24=0`
`<=>-41x+69=0`
`<=>-41x=-69`
`<=> x=69/41`
\(B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5B=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(\Rightarrow5B-B=5-\frac{1}{5^{100}}\)
\(\Rightarrow B=\frac{5-\frac{1}{5^{100}}}{4}\)
\(B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(5B=1+5+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5B-B=\left(1+5+\frac{1}{5}+...+\frac{1}{5^{99}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{100}}\right)\)
\(4B=5-\frac{1}{5^{100}}\)
\(B=\frac{5-\frac{1}{5^{100}}}{4}\)
hok tốt!!
\(\frac{\frac{4}{17}-\frac{4}{45}+\frac{4}{156}}{\frac{3}{17}-\frac{3}{45}+\frac{3}{156}}=\frac{4.\left(\frac{1}{17}-\frac{1}{45}+\frac{1}{156}\right)}{3.\left(\frac{1}{17}-\frac{1}{45}+\frac{1}{156}\right)}=\frac{4}{3}\)
Ta có : \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{99}}\)
\(\Rightarrow3A-A=1-\frac{1}{3^{100}}\)
\(\Rightarrow2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)