K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2021

\(\Leftrightarrow\sqrt{-x^2-2x+15}\le x^2+2x+m\)

\(\Leftrightarrow-x^2-2x+15+\sqrt{-x^2-2x+15}-15\le m\)

Đặt \(t=-x^2-2x+15\Rightarrow0\le t\le4\)

\(\Rightarrow t^2+t-15\le m\) với \(t\in\left[0;4\right]\)

\(\Leftrightarrow m\ge\max\limits_{\left[0;4\right]}\left(t^2+t-15\right)\)

Xét \(f\left(t\right)=t^2+t-15\) trên [0;4]

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)

\(\Rightarrow f\left(t\right)\le5\Rightarrow m\ge5\)

8 tháng 3 2021

đoạn xét f(t) là sao í ạ , em vẫn chưa hiểu lắm

 

29 tháng 4 2020

\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)

mình đánh nhầm, giúp vs ạ

7 tháng 4 2021

ĐK: \(-2\le x\le4\)

Đặt \(\sqrt{-x^2+2x+8}=t\left(0\le t\le3\right)\)

\(\sqrt{\left(x+2\right)\left(4-x\right)}\le x^2-2x+m\)

\(\Leftrightarrow-x^2+2x+8+\sqrt{-x^2+2x+8}-8\le m\)

\(\Leftrightarrow m\ge f\left(t\right)=t^2+t-8\)

Yêu cầu bài toán thỏa mãn khi \(m\ge maxf\left(t\right)=f\left(4\right)=12\)

Kết luận: \(m\ge12\)

22 tháng 7 2016

đặt t = \(\sqrt{-x^2+2x+15}\) ( đk t >= 0 )

xét hàm f(t) = t^2 - 4t -28 

....tự làm ... 

5 tháng 7 2021

\(\sqrt{-x^2-2x+15}\le x^2+2x+a\)

Đặt \(\sqrt{-x^2-2x+15}=b\). Vì \(x\in[-5;3]\) nên \(b\in[0;4]\)

Bất phương trình trở thành \(b\le-b^2+15+a\Leftrightarrow f\left(b\right)=-b^2-b+a+15\ge0\left(1\right)\)

Ycbt trở thành: Tìm a để BPT (1) nghiệm đúng \(\forall b\in[0;4]\)

\(\Leftrightarrow\hept{\begin{cases}f\left(0\right)\ge0\\f\left(4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+15\ge0\\a-5\ge0\end{cases}}\Leftrightarrow a\ge5\)

29 tháng 3 2021

\(\left(x+1\right)^2+\sqrt{2x\left(x+a+1\right)}=a^2+1+\left|x+a\right|\)

\(\Leftrightarrow x^2+2x+\sqrt{2x^2+2xa+2x}=a^2+\left|x+a\right|\)

\(\Leftrightarrow2x^2+2ax+2x+\sqrt{2x^2+2xa+2x}=x^2+2ax+a^2+\left|x+a\right|\)

\(\Leftrightarrow\left(\sqrt{2x^2+2xa+2x}+\dfrac{1}{2}\right)^2=\left(\left|x+a\right|+\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow\sqrt{2x^2+2xa+2x}=\left|x+a\right|\)

\(\Leftrightarrow2x^2+2xa+2x=x^2+2xa+a^2\)

\(\Leftrightarrow x^2+2x=a^2\)

Đồ thị hàm số:

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(0\le a^2\le8\Leftrightarrow-2\sqrt{2}\le a\le2\sqrt{2}\)

18 tháng 2 2021

ĐK: \(-5\le x\le3\)

\(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\)

\(\Leftrightarrow a\ge-x^2-2x+15+\sqrt{-x^2-2x+15}-15\left(1\right)\)

Đặt \(\sqrt{-x^2-2x+15}=t\left(0\le t\le4\right)\)

\(\left(1\right)\Leftrightarrow a\ge f\left(t\right)=t^2+t-15\)

Yêu cầu bài toán thỏa mãn khi

\(a\ge maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right)\right\}=f\left(4\right)=5\)

Vậy \(a\ge5\)