Chứng minh ràng trong tam giác ABC sin (A + 2B)/2 = cos((C - B)/2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử \(\Delta ABC\)cân tại C, kẻ \(CH⊥AB\)
Ta có VT= \(\cos^2A=\frac{AH^2}{AC^2};\cos^2B=\frac{BH^2}{BC^2}\Rightarrow\cos^2A+\cos^2B=\frac{AH^2}{AC^2}+\frac{BH^2}{BC^2}=2.\frac{AH^2}{AC^2}\)do \(\hept{\begin{cases}AH=BH\\AC=BC\end{cases}}\)
\(\sin^2A=\frac{CH^2}{CA^2};\sin^2B=\frac{CH^2}{CB^2}\Rightarrow\sin^2A+\sin^2B=2.\frac{CH^2}{CA^2}\)
\(\Rightarrow\frac{\cos^2A+\cos^2B}{\sin^2A+\sin^2B}=\frac{2.\frac{AH^2}{AC^2}}{2.\frac{CH^2}{AC^2}}=\frac{AH^2}{CH^2}\)
Ta có VP =\(\frac{1}{2}\left(\cot^2A+\cot^2B\right)=\frac{1}{2}.\left(\frac{AH^2}{CH^2}+\frac{BH^2}{CH^2}\right)=\frac{1}{2}\left(2.\frac{AH^2}{CH^2}\right)=\frac{AH^2}{CH^2}\)
Ta thấy VT=VP\(\Rightarrow\)giả sử đúng
Vậy ........
a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)
b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)
Tương tự \(\Rightarrow CH=BC.sin^2B\)
A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º
a) sin A = sin (180º – A) = sin (B + C)
b) cos A = – cos (180º – A) = –cos (B + C)
\(\Leftrightarrow sinA=2sinB.cosC\)
\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)
Vậy tam giác ABC cân tại A
a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)
(A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)
b) Bạn xem lại đề nhé
c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)
= \(sin^4a+cos^4a+2sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)^2=1\)
Ta có: `\hat{A}+\hat{B}+\hat{C}=180^o`
`=>\hat{C}-\hat{B}=180^o-\hat{A}-2\hat{B}`
`=>[\hat{C}-\hat{B}]/2=90^o - [\hat{A}+2\hat{B}]/2`
`=>sin` `[\hat{A}+2\hat{B}]/2 = cos` `[\hat{C}-\hat{B}]/2`
`=>đpcm`.