Cho abc ⋮ 25 , chứng tỏ rằng bc ⋮ 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\overline{abc}=a.100+\overline{bc}=25.4a+\overline{bc}\vdots 25$
$\Rightarrow \overline{bc}\vdots 25$ (do $25.4a\vdots 25$)
Câu 2 :
Ta có: abc = a00 + bc = a x 100 + bc
Vì a x 100 chia hết cho 25 (trong tích có 100 chia hết cho 25)
=> bc cũng phải chia hết cho 25 (Để abc chia hết cho 25)
Diễn đạt hơi lủng củng để dễ hiểu mong bạn thông cảm
Ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).
ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).
2525 - 2524 = 2524.(25 - 1) = 2524.24 chia hết cho 24
2525 - 2524 = 2524.(25 - 1) = 2524.24 chia hết cho 24
5^25 lẻ ; 2^24 chẵn => 25^25 - 2^24 lẻ => không chia hết cho 24. Đề sai
\(25^{25}-25^{24}=25^{24}.25-25^{24}.1=25^{24}.\left(25-1\right)=25^{24}.24\)chia hết cho 24(đpcm)
\(25^{25}-25^{24}=25^{24}.25-25^{24}=25^{24}.\left(25-1\right)=25^{24}.24\) chia hết cho 24.
abc = 100a + bc
Do 100 ⋮ 25
⇒ 100a ⋮ 25
Mà abc ⋮ 25
⇒ bc ⋮ 25