cho tứ diện ABCD. H,K lần lượt là trung điểm BC và CD. Xác định vị trí tương đối của các đường thẳng sau với mp(ABD)
a) vẽ hình
b) đường thẳng BD
c) đường thẳng CD
d) đường thẳng HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(K\in HK;K\in BC\)
Do đó: HK cắt BC tại K
b: Xét ΔBAC có
H,K lần lượt là trung điểm của BA,BC
=>HK là đường trung bình
=>HK//AC
c: C thuộc BK
C thuộc CD
Do đó: BK cắt CD tại C
e: Trong mp(ABCD), ta có: HK và CD không song song vối nhau
=>HK cắt CD tại M
a: Xét ΔCBD có M,N lần lượt là trung điểm của CD,CB
=>MN là đường trung bình của ΔCBD
=>MN//BD
mà \(BD\subset\left(ABD\right)\) và MN không nằm trong mp(ABD)
nên MN//(ABD)
b: Chọn mp(ACD) có chứa AM
\(CD\subset\left(ACD\right);CD\subset\left(BCD\right)\)
Do đó: \(\left(ACD\right)\cap\left(BCD\right)=CD\)
Ta có: \(M=AM\cap CD\)
=>M là giao điểm của AM với mp(BCD)
=>AM cắt mp(BCD) tại M
c: \(N\in BC\subset\left(ABC\right);A\in\left(ABC\right)\)
Do đó: \(AN\subset\left(ABC\right)\)
a: Xét ΔSBC có SH/SB=SK/SC=1/2
nên HK//BC
mà \(BC\subset\left(ABC\right)\); HK không nằm trong mp(ABC)
nên HK//(ABC)
b: \(K\in SC\subset\left(SBC\right);K\in AK\)
Do đó: \(K\in AK\cap\left(SBC\right)\)
mà \(A\notin\left(SBC\right)\)
nên \(K=AK\cap\left(SBC\right)\)
c: \(A\in\left(SAB\right);H\in SB\subset\left(SAB\right)\)
Do đó: \(AH\subset\left(SAB\right)\)
a: Xét ΔCBD có
M,N lần lượt là trung điểm của CD,CB
=>MN là đường trung bình
=>MN//BD
b: \(D\in AM;D\in DA\)
Do đó: AM cắt CD tại D
c: Trong mp(ABCD), ta có: BM không song song với DN
=>BM cắt DN tại I
e: Trong mp(ABCD), ta có: MN và AB không song song
=>MN cắt AB tại K
b: \(BD\subset\left(ABD\right)\)
=>BD nằm trong mp(ABD)
c: \(D\in CD\)
\(D\in\left(ABD\right)\)
Do đó: \(D=CD\cap\left(ABD\right)\)
=>CD cắt (ABD)
d: Xét ΔCBD có H,K lần lượt là trung điểm của CB,CD
=>HK là đường trung bình
=>HK//BD
=>HK//(ABD)