K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

`P <= 1` là `P` ở đâu cậu nhỉ cộng `A` với `B` lại với nhau à?

8 tháng 9 2023

xin lỗi để mình viết cả bài toán

8 tháng 9 2023

b)

\(P=A-B=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2-9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9-x^2+9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(2-x\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x}{x-3}\)

c)

Để \(P\le1\) thì:

\(-\dfrac{x}{x-3}\le1\)

\(\Leftrightarrow\dfrac{x}{x-3}\ge1\\ \Leftrightarrow x-3-x\ge1\\ \Leftrightarrow-3\ge1\left(vô.lý\right)\)

Vậy không tồn tại giá trị x để \(P\le1\)

`HaNa♬D`

8 tháng 9 2023

Làm lại nha cái này đúng, kia sai nha=)

b)

Với \(\left\{{}\begin{matrix}x\ne3\\x\ne2\end{matrix}\right.\)

\(P=A-B=(\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)})+\dfrac{2x-1}{x-3}\\ =\left(\dfrac{2x-9-x^2-9}{\left(x-3\right)\left(x-2\right)}\right)+\dfrac{\left(2x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}+\dfrac{2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2+2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-3x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\dfrac{x-1}{x-3}\)

c)

Để P\(\ge1\) thì:

\(\dfrac{x-1}{x-3}\ge1\\ \Leftrightarrow x-3-x+1-1\ge0\\ \Leftrightarrow-3\ge0\left(vô.lý\right)\)

Vậy không tồn tại giá trị x để \(P\ge1\)

`HaNa☘D`

a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)

b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)

c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)

\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)

P<=2

=>x+1>0

=>x>-1

a) Ta có: \(\left(x+1\right)\left(2x-3\right)-3\left(x-2\right)=2\left(x-1\right)^2\)

\(\Leftrightarrow2x^2-3x+2x-3-3x+6=2\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2-4x+3-2x^2+4x-2=0\)

\(\Leftrightarrow1=0\)(vô lý)

Vậy: \(S=\varnothing\)

21 tháng 2 2021

Ai giúp vs

24 tháng 1 2021

Mk giải giúp bạn phần a thôi nha! (Dài lắm, lười :v)

a, 1 + \(\dfrac{x}{3-x}\) = \(\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\) (x \(\ne\) -2; x \(\ne\) \(\pm\) 3)

\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}\)

\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2x+6}{\left(x+2\right)\left(x+3\right)}\)

\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{7x+6}{x^2+5x+6}\)

Vì 3 - x \(\ne\) 0; x2 + 5x + 6 \(\ne\) 0

\(\Rightarrow\) 3(x2 + 5x + 6) = (7x + 6)(3 - x)

\(\Leftrightarrow\) 3x2 + 15x + 18 = 21x - 7x2 + 18 - 6x

\(\Leftrightarrow\) 10x2 = 0

\(\Leftrightarrow\) x = 0 (TM)

Vậy S = {0}

Chúc bn học tốt! (Nếu bạn cần phần nào khác mk có thể giúp bn chứ đừng có đăng hết lên, ít người làm lắm :v)

 

24 tháng 1 2021

b)\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\Leftrightarrow x^2+2x-2=x-2\\ \Leftrightarrow x^2+2x-2-x+2=0\Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

vậy..

1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)

\(\Leftrightarrow2x-8+12x=4x-2\)

\(\Leftrightarrow10x=6\)

hay \(x=\dfrac{3}{5}\)

2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)

\(\Leftrightarrow15x-6-30=10-20x\)

\(\Leftrightarrow35x=46\)

hay \(x=\dfrac{46}{35}\)

3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)

\(\Leftrightarrow3x-6-4=6x-6\)

\(\Leftrightarrow-3x=4\)

hay \(x=-\dfrac{4}{3}\)

11 tháng 8 2021

1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)

\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)

\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)

a: \(P=\left(\dfrac{x+2}{\left(x-2\right)\left(x-3\right)}+\dfrac{x+3}{x-2}-\dfrac{x+2}{x-3}\right):\dfrac{\left(2x+5\right)\left(x-3\right)+9}{x-3}\)

\(=\dfrac{x+2+\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\cdot\dfrac{x-3}{2x^2-6x+5x-15+9}\)

\(=\dfrac{x+2+x^2-9-x^2+4}{\left(x-2\right)}\cdot\dfrac{1}{2x^2-x-6}\)

\(=\dfrac{x-3}{x-2}\cdot\dfrac{1}{2x^2-4x+3x-6}\)

\(=\dfrac{x-3}{x-2}\cdot\dfrac{1}{\left(x-2\right)\left(2x+3\right)}\)

\(=\dfrac{x-3}{\left(x-2\right)^2\left(2x+3\right)}\)