Cho 2023 điểm phân biệt trong đó chỉ có 23 điểm thẳng hàng. Tính số đường thẳng đi qua hai trong 2023 điểm nói trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đường thẳng vẽ được là:
\(1+3\cdot2020+C^2_{2020}=2045251\left(đường\right)\)
Cứ 3 đỉnh sẽ tạo thành 1 tam giác
Vì 2022 điểm cùng thuộc đường thẳng a nên qua 3 điểm bất kỳ trong 2022 điểm này đều ko tạo được tam giác nào.
Các tam giác được tạo từ 2023 điểm nói trên phải có 1 đỉnh M và 2 đỉnh còn lại thuộc đường thẳng a.
Tam giác có ba đỉnh thỏa mãn đề bài là tam giác trong đó
Có 1 cách chọn đỉnh thứ nhất là đỉnh M
Có 2022 cách chọn đỉnh thứ hai
Có 2021 cách chọn đỉnh thứ ba
Số tam giác được tạo thành là: 1 x 2022 x 2021 = 4 086 462
Theo cách tính trên mỗi tam giác được tính hai lần
Số tam giác được tạo thành từ 2023 điểm nói trên là :
4 086 462 : 2 = 2 043 231
Kết luận :
Số đường thẳng là:
\(1+C^2_{25}+25\cdot5=426\left(đường\right)\)
a) Vì cứ qua 2 điểm ta kẻ được 1 và chỉ 1 đường thẳng . Nếu có 2 điểm thẳng hàng , từ 1 điểm kẻ lần lượt với 10 điểm còn lại ta được:
11 . 10 = 110 ( đường thẳng ) . Nhưng như vậy mỗi đường thẳng được tính hai lần nên có số đường thẳng là :
110 : 2 = 55 ( đường thẳng )
b) Vì cứ qua 2 điểm ta kẻ được 1 và chỉ 1 đường thẳng .Nếu có 2 điểm thẳng hàng từ 1 điểm kẻ lần lượt với 10 điểm còn lại ta được:
11 . 10 = 110 ( đường thẳng ) . Nhưng như vậy mỗi đường thẳng được tính hai lần nên có số đường thẳng là :
110 : 2 = 55 ( đường thẳng )
+ Nếu có 5 điểm không thẳng hàng , từ 1 điểm kẻ được với 4 điểm còn lại làm như vậy với 5 điểm ta có : 4 . 5 = 20 ( đường thẳng )
Nhưng vì có điểm thẳng hàng nên 20 đường thẳng này chỉ được tính là 1
Vậy số đường thẳng kẻ được trong đó có 5 điểm thẳng hàng là :
55 - 20 + 1 = 36 ( đường thẳng )