Một mái che giếng trời có dạng hình chóp tứ giác đều cạnh đáy 2,5m, chiều cao của mặt bên xuất phát từ đỉnh của hình chóp tứ giác đều bằng 2,2m a) Tính diện tích xung quanh của mái che b)Chi phí cho mỗi mét vuông mái che bằng kính là 2 triệu đồng.Hỏi chi phí để hoàn thành mái che là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là đỉnh hình chóp và BC là 1 cạnh đáy (BC = 2,2m) tạo thành tam giác ABC cân tại A, AH là đường cao kẻ từ A xuống BC (H thuộc BC và AH = 2,8m)
=> AH đồng thời là đường trung trực của BC
=> H là trung điểm BC => BH = BC/2 = 2,2/2 = 1,1 (m)
Xét tam giác ABH vuông tại H (AH vuông góc với BC)
=> AB = \(\sqrt{BH^2+AH^2}\) = \(\sqrt{1,1^2+2,8^2}\) = 6,5 (m)
Vậy độ dài cạnh bên khoảng 6,5 m
a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))
Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))
Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))
Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))
Hình chóp tam giác đều nên là chiều cao của mặt bên xuất phát từ đỉnh chính là trung đoạn
Sxq=1/2*10*3*12=5*36=180cm2
Sxq=1/2*10*4*12=2*10*12=2*120=240cm2
Stp=240+10^2=340cm2
Sxq=16*4*17/2=544cm2
Stp=544+16^2=800cm2
V=1/3*16^2*15=1280cm3
Nữa chu vi đáy của hình chóp đều:
\(16\cdot4:2=32\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=32\cdot17=544\left(cm^2\right)\)
Diện tích mặt đáy của hình chóp đều:
\(S_đ=16^2=256\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)
a: Sxq=1/2*2,2*2,5*4=11m2
b: Diện tích cần làm mái che là: 11+2,5^2=17,25m2
Số tiền cần chi là:
17,25*2000000=34500000(đồng)