So sánh (ko dùng máy tính)
\(\frac{\sqrt{8}}{3}\) và \(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
\(\left(\sqrt{a+b}\right)^2=a+b\)
Nếu: \(2\sqrt{ab}>0\left(a,b>0\right)\text{ thì: }\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)
<=>\(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
\(B=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}+....+\frac{1}{\sqrt{2013}+\sqrt{2015}}\)
\(=\frac{1}{2}.\left(\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{5}}+...+\frac{2}{\sqrt{2013}-\sqrt{2014}}\right)\)
\(=\frac{1}{2}.\left(-1+\sqrt{3}-\sqrt{3}+\sqrt{5}-...-\sqrt{2013}+\sqrt{2015}\right)\)
=\(\frac{\sqrt{2015}-1}{2}\)
Xét hiệu: B-A=\(\frac{\sqrt{2015}-1}{2}-\sqrt{481}=\frac{\sqrt{2015}-1}{2}-\frac{\sqrt{1924}}{2}=\frac{\sqrt{2015}-\left(\sqrt{1}+\sqrt{1924}\right)}{2}>\frac{\sqrt{2015}-\sqrt{1+1924}}{2}\)
\(=\frac{\sqrt{2015}-\sqrt{1925}}{2}>0\Rightarrow A>B\)
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)
Ta có :
\(\sqrt{3}< \sqrt{4}=2\)
\(\sqrt{8}< \sqrt{9}=3\)
\(\sqrt{24}< \sqrt{25}=5\)
\(\Rightarrow\sqrt{3}+\sqrt{8}+\sqrt{24}< 2+3+5=10\)(đpcm)
Vậy ...
struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }
a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)
\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)
Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)
b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)
\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)
Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)
anh đã trở lại
ai chơi gunny ko
mk biết là hơi lỗi thời nhưng ai chơi thì kết bạn và mk nhé các gunner
Có \(\sqrt{8}\). 4 = \(\sqrt{\frac{128}{16}}\).4 > \(\sqrt{\frac{81}{16}}\).4 = 9/4 . 4 =9 = 3.3
<=> \(\frac{\sqrt{8}}{3}\)> 3/4