K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Có :

\(2^{99}=2^8.2^{91}=2^8.\left(2^{13}\right)^7=2^8.8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

Vì \(8192>3125\Rightarrow8192^7>3125^7\Rightarrow2^8.8192^7=3125^7\)hay \(2^{99}>3^{35}\)

26 tháng 10 2017

2500=(25)100=32100

5200=(52)100=25100

vì 32100 > 25100 \(\Rightarrow\)2500 > 5200

11 tháng 4 2015

291=(213)7=81927

535=(55)7=31257

Vì 8192>3125 nên 81927>31257 nên 291>535

không chắc chắn là đúng đâu

15 tháng 7 2016

không biết

4 tháng 10 2018
  •  Về phần so sánh hai lũy thừa thi bạn phải làm thế nào cho nó cùng cơ số hoặc cùng số mũ. Sau đó áp dụng quy tắc

Với \(a>b\Rightarrow a^m>b^m\) và ngược lại với a < b (đối với cùng số mũ) hoặc Với \(m>n\Rightarrow a^m>a^n\) và ngược lại với m < n (đối với cùng cơ số)

  • Tiếp theo,về dạng: \(A=2+2^2+2^3+...+2^{900}\). Bạn có thấy tất cả cơ số đều là 2 đúng không? Vì chúng ta nhân tất cả cho 2. Được: \(2A=2^2+2^3+2^4+...+2^{901}\)

Sau đó lấy \(2A-A\) được: \(A=2^{901}-2\) (Do 2A - A = A)

Các dạng khác làm tương tự!

5 tháng 10 2018

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

\(8192>3125\Rightarrow8192^7>3125^7=2^{91}>5^{35}\)

\(21^{12}=\left(21^3\right)^4=9261^4\)

\(54< 9261\Rightarrow54^4< 9261^4\Rightarrow54^4< 21^{12}\)

1 tháng 4 2016

Ta có: \(1\cdot3\cdot5\cdot9=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot99\cdot100}{2\cdot4\cdot6\cdot...\cdot100}=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot100}{2\cdot1\cdot2\cdot2\cdot...\cdot2\cdot50}=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot50\cdot2\cdot2\cdot2\cdot...\cdot2\cdot2}\)

                               \(=\frac{51\cdot52\cdot...\cdot100}{2\cdot2\cdot2\cdot...\cdot2\cdot2}\)( 50 THỪA SỐ 2 ) \(=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)

1 tháng 4 2016

Tính C như bạn Châu Anh tính rùi kết luận C>D

Chuẩn luôn đó bạn!