K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2023

\(Z=\dfrac{3a+4}{a+2}=\dfrac{3\left(a+2\right)-2}{a+2}=3-\dfrac{2}{a+2}\)

Vì \(3\inℤ\) nên để \(Z\inℤ\) thì \(\dfrac{2}{a+2}\inℤ\) hay \(a+2\inƯ\left(2\right)\)

\(\Rightarrow a+2\in\left\{\pm1;\pm2\right\}\) \(\Rightarrow a\in\left\{-3;-1;-4;0\right\}\)

Vậy để \(Z\inℤ\) thì \(a\in\left\{-4;-3;-1;0\right\}\)

6 tháng 9 2023

Để Z là số nguyên : \(\Leftrightarrow\dfrac{3a+4}{a+2}\in Z\)

Xét \(Z=\dfrac{3a+4}{a+2}\)

\(Z=\dfrac{3a+6-2}{a+2}\)

\(Z=\dfrac{3a+6}{a+2}-\dfrac{2}{a+2}=3-\dfrac{2}{a+2}\)

Để \(Z\) là số nguyên :

\(\Leftrightarrow\dfrac{2}{a+2}\in Z\Leftrightarrow\left(a+2\right)\inƯ\left(2\right)\)

Do đó : ta có bảng 

a+2 1 -1 2 -2
a -1 -3 0 -4

 

Vậy............
 

 

6 tháng 12 2021

tìm giá trị x để biểu thức nguyên

D=2x-3/x+5 

E=x^2-5/x-3

a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2

=>-3 chia hết cho x+2

=>x+2 thuộc {1;-1;3;-3}

=>x thuộc {-1;-3;1;-5}

b: B nguyên khi x^2+x+3 chia hết cho x+1

=>3 chia hết cho x+1

=>x+1 thuộc {1;-1;3;-3}

=>x thuộc {0;-2;2;-4}

a: Để M là số nguyên thì 5 chia hết cho căn a+1

=>căn a+1 thuộc {1;5}

=>a thuộc {0;4}

b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)

=>M là số nguyên

c: \(\sqrt{a}+1>=1\)

=>\(\dfrac{5}{\sqrt{a}+1}< =5\)

=>M<=6

\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)

=>2<=M<=6

M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)

=>\(\dfrac{5}{\sqrt{a}+1}=1\)

=>căn a+1=5

=>căn a=4

=>a=16

M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)

=>căn a+1=5/2

=>căn a=3/2

=>a=9/4

M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)

=>căn a+1=5/3

=>căn a=2/3

=>a=4/9

\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)

=>căn a+1=5/4

=>căn a=1/4

=>a=1/16

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
a. ĐKXĐ: $a\neq \pm 2$

\(M=\frac{(2+a)^2}{(2-a)(2+a)}+\frac{4a^2}{(2-a)(2+a)}-\frac{(2-a)^2}{(2+a)(2-a)}\)

\(=\frac{(2+a)^2+4a^2-(2-a)^2}{(2-a)(2+a)}=\frac{4a(a+2)}{(2-a)(2+a)}=\frac{4a}{2-a}\)

b.

$|a+1|=3\Rightarrow a+1=\pm 3\Rightarrow a=-2$ hoặc $a=-4$

Vì $a\neq \pm 2$ nên $a=-4$

Khi đó: $M=\frac{4a}{2-a}=\frac{4(-4)}{2-(-4)}=\frac{-8}{3}$

c.

Trước tiên cần tìm $a$ để $M$ nguyên đã.

$M=\frac{4a}{2-a}=\frac{8-4(2-a)}{2-a}=\frac{8}{2-a}-4$ nguyên khi $\frac{8}{2-a}$ nguyên 

$\Rightarrow 2-a\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$

$\Rightarrow a\in\left\{1; 3; 0; 4; -2; 6; 10; -6\right\}$.

Thử lại thấy $a\in\left\{1; 3; 0; 4\right\}$ thỏa mãn $M$ là số nguyên chia hết cho $4$

27 tháng 8 2023

A = \(\dfrac{3n+1}{2n+3}\) (n \(\ne\) - \(\dfrac{3}{2}\))

\(\in\) Z ⇔ 3n + 1 ⋮ 2n + 3

             6n + 2 ⋮ 2n + 3

         6n + 9 - 7 ⋮ 2n + 3

    3.(2n + 3) - 7 ⋮ 2n + 3

                      7 ⋮ 2n + 3 ⇒ 2n + 3 \(\in\) Ư(7) = { -7; -1; 1; 7}

Lập bảng ta có: 

2n+3 -7 -1 1 7
n -5 -2 -1 2

Vậy các số nguyên n thỏa mãn đề bài là:

\(\in\) { -5; -2; -1; 2}

            

27 tháng 8 2023

\(A=\dfrac{3n+1}{2n+3}\inℤ\) \(\left(n\ne-\dfrac{3}{2}\right)\)

\(\Rightarrow3n+1⋮2n+3\)

\(\Rightarrow2\left(3n+1\right)-3\left(2n+3\right)⋮2n+3\)

\(\Rightarrow6n+2-6n-9⋮2n+3\)

\(\Rightarrow-7⋮2n+3\)

\(\Rightarrow2n+3\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow n\in\left\{-2;-1;-5;2\right\}\)