Cho hcn ABCD có AB =2AD và AC = \(4\sqrt{5}\)
Vẽ AH vuông góc BD . Tính CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: AH=6*8/10=4,8cm
a: Xét ΔABC vuông tại B có \(AC^2=BA^2+BC^2\)
=>\(AC^2=5^2+12^2=169\)
=>AC=13(cm)
Xét ΔABC vuông tại B có \(sinACB=\dfrac{AB}{AC}=\dfrac{5}{13}\)
=>\(\widehat{ACB}\simeq23^0\)
\(\Leftrightarrow\widehat{BAC}=90^0-\widehat{ACB}=67^0\)
b: Xét ΔBAC có BM là phân giác
nên \(BM=\dfrac{2\cdot BA\cdot BC}{BA+BC}\cdot cos\left(\dfrac{\widehat{ABC}}{2}\right)\)
\(=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{60\sqrt{2}}{17}\left(cm\right)\)
c: Xét ΔABK vuông tại A có AH là đường cao
nên \(BH\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BK=AH\cdot AC\)
ta có : \(\begin{cases}AB\perp SH\\AB\perp HF\end{cases}\) \(\Rightarrow AB\perp\left(SHF\right)\Rightarrow\left(SAB\right)\perp\left(SHF\right)\)theo giao tuyến SF
kẻ \(HK\perp SF\) tại K \(\Rightarrow HK\perp\left(SAB\right)\Rightarrow d_{\left(B;\left(SAB\right)\right)}=HK\)
\(HF=\frac{4a}{5}\Rightarrow HK=\frac{a\sqrt{15}}{5}\)
(SAB) chứa SB và song song CD
\(\Rightarrow d_{\left(CD;SB\right)}=d_{\left(CD;\left(SAB\right)\right)}=d_{\left(C;\left(SAB\right)\right)}=CM\)(M là hình chiếu của C lên (SAB))
có : HK//CM \(\Rightarrow\frac{CM}{HK}=\frac{CA}{AH}=5\)\(\left(AC=2a\sqrt{5};AH=\frac{2a\sqrt{5}}{5}\right)\)
\(\Rightarrow CM=5HK=a\sqrt{15}\)
Vậy : \(d_{\left(CD;SB\right)}=a\sqrt{15}\)
bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=152+202=625
BC=25cm
* AH.BC=AB.AC
AH.25=15.20
AH.25=300
AH=12cm
tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
AC2=252-152=400
AC=20cm
2AD=5cm
=>\(AD=\dfrac{5}{2}=2,5\left(cm\right)\)
ABCD là hình chữ nhật
=>\(AC^2=AB^2+AD^2\)
=>\(AC^2=5^2+2,5^2=31,25\)
=>\(AC=\sqrt{31,25}=\dfrac{5\sqrt{5}}{2}\left(cm\right)\)
Xét ΔHAB có M,N lần lượt là trung điểm của HA,HB
=>MN là đường trung bình của ΔHAB
=>\(MN=\dfrac{AB}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)
ABCD là hình chữ nhật
=>AC=BD và AB^2+AD^2=BD^2
=>\(AB^2+AD^2=\left(4\sqrt{5}\right)^2=80\)
=>5AD^2=80
=>AD^2=16
=>AD=4
=>AB=8
ΔABD vuông tại A có AH là đường cao
nên AH*BD=AB*AD
=>AH*4căn 5=32
=>\(AH=\dfrac{8}{\sqrt{5}}\)
ΔABD vuông tại A có AH là đường cao
nên DH*DB=AD^2
=>\(DH\cdot4\sqrt{5}=4^2=16\)
=>\(DH=\dfrac{4}{\sqrt{5}}\)
Kẻ CK vuông góc BD, O là giao điểm của AC và BD
ABCD là hình chữ nhật
=>AC=BD và AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
=>DO=2căn 5
\(HO=2\sqrt{5}-\dfrac{4}{\sqrt{5}}=2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)
Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
Do đó: ΔAHD=ΔCKB
=>AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
=>O là trung điểm của HK
=>HK=2*HO=12*căn 5/5
\(AK=\sqrt{AH^2+HK^2}=\dfrac{4\sqrt{65}}{5}\)
=>\(CH=\dfrac{4\sqrt{65}}{5}\)