K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BD cắt AC tại E

b: Xét ΔSAC có SM/SA=SN/SC

nên MN//AC

c: Trong mp(SAC), ta có: SE không song song với MN

=>SE cắt MN tại K

d: \(C\in SN\)

\(C\in\left(ABCD\right)\)

Do đó: \(SN\cap\left(ABCD\right)=C\)

20 tháng 10 2023

a: Xét ΔSAC có M,N lần lượt là trung điểm của SA,SC

=>MN là đường trung bình của ΔSAC

=>MN//AC

mà MN không thuộc mp(ABCD) và \(AC\subset\left(ABCD\right)\)

nên MN//(ABCD)

b: \(A\in AN;A\in\left(ABD\right)\)

=>\(A\in AN\cap\left(ABD\right)\)

mà \(N\in SC\) không thuộc mp(ABD)

nên \(A=AN\cap\left(ABD\right)\)

c: \(S\in\left(SAC\right);E\in AC\subset\left(SAC\right)\)

Do đó: \(SE\subset\left(SAC\right)\)

a: \(C\in AI\)

\(C\in BC\)

Do đó: AI cắt BC tại C

b: HK thuộc mp(SBD)

BC thuộc mp(SBC)

Do đó: HK và BC là hai đường chéo nhau

c:Trong mp(SBD), ta có: HK và SI không song song

=>HK cắt SI tại M

d: \(H\in BC\subset\left(SBC\right)\)

\(H\in AH\)

Do đó: AH cắt (SBC)=H

a: Xét ΔSBC có M,N lần lượt là trung điểm của SB,SC

=>MN là đường trung bình

=>MN//BC

b: MN//BC

BC//AD

Do đó: MN//AD

c: \(C\in SN;C\in CD\)

Do đó: SN cắt CD tại C

d: B thuộc SM

B thuộc BC

Do đó: SM cắt BC tại B

e: MN thuộc mp(SBC)

AB thuộc mp(SAB)

Do đó: MN và AB là hai đường chéo nhau

f: \(I\in SI;I\in\left(ABCD\right)\)

Do đó: \(SI\cap\left(ABCD\right)=I\)

a: \(E\in AC\subset\left(SAC\right)\)

\(E\in BD\subset\left(SBD\right)\)

Do đó: \(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD với BC

\(K\in AD\subset\left(SAD\right)\)

\(K\in BC\subset\left(SBC\right)\)

Do đó: \(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(SK=\left(SAD\right)\cap\left(SBC\right)\)

c: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\), xy đi qua S và xy//AB//CD

a: \(E\in AC\subset\left(SAC\right);E\in BD\subset\left(SBD\right)\)

=>\(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD và BC

\(K\in AD\subset\left(SAD\right);K\in BC\subset\left(SBC\right)\)

=>\(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SK\)

c: Xét (SAB) và (SCD) có

AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy; xy đi qua S và xy//AB//CD

11 tháng 12 2023

a: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

b: Xét ΔSAB có

M,N lần lượt là trung điểm của AS,AB

=>MN là đường trung bình của ΔSAB

=>MN//SB

Ta có: MN//SB

SB\(\subset\)(SBC)

MN ko nằm trong mp(SBC)

Do đó: MN//(SBC)

13 tháng 8 2021

undefined

a: Ta có: CD//AB

AB\(\subset\)(SAB)

CD không nằm trong mp(SAB)

Do đó: CD//(SAB)

b: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình của ΔSBD

=>MN//BD

Xét (CMN) và (ABCD) có

\(C\in\left(CMN\right)\cap\left(ABCD\right)\)

MN//BD

Do đó: (CMN) giao (ABCD)=xy, xy đi qua C và xy//MN//BD

 

M,N lần lượt là trung điểm của SB và SB là sai đề rồi bạn. Bạn coi lại đề nha

Bảo sao mình giải mãi không được, cảm ơn bạn nhiều nhé