Giải pt: \(\sqrt{x+2\sqrt{x+1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}+8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
\(\text{a) }\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\\ \Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\\ \Leftrightarrow\sqrt{\left(2x-1\right)+2\sqrt{2x-1}+1}+\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}=2\\ \Leftrightarrow\sqrt{2x-1}+1+\left|\sqrt{2x-1}-1\right|=2\)
Với \(x\ge1\Leftrightarrow\sqrt{2x-1}+1+\left|\sqrt{2x-1}-1\right|=2\)
\(\Leftrightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\\ \Leftrightarrow2\sqrt{2x-1}=2\\ \Leftrightarrow2x-1=1\\ \Leftrightarrow x=1\left(T/m\right)\)
Với \(x< 1\Leftrightarrow\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)
\(\Leftrightarrow0x=0\left(Nghiệm\text{ }đúng\text{ }\forall x\right)\\ \Leftrightarrow x< 1\)
Vậy pt có nghiệm \(x\le1\)
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=\left|2\sqrt{x+1}-2\right|\)
Áp dụng BĐT trị tuyệt đối:
\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=\left|2\sqrt{x+1}-2\right|\)
Dấu "=" xảy ra khi và chỉ khi \(\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-3\right)\ge0\)
\(\Leftrightarrow\sqrt{x+1}-3\ge0\)
\(\Leftrightarrow x+1\ge9\)
\(\Leftrightarrow x\ge8\)
1
ĐK: \(x\ge1\)
Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)
Khi đó:
\(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow t^2-2t+1=16\\ \Leftrightarrow\left(t-1\right)^2=4^2\\ \Leftrightarrow t-1=4\\ \Leftrightarrow t=4+1=5\left(tm\right)\)
\(\Leftrightarrow\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=5^2=25\\ \Leftrightarrow x=25+1=26\left(tm\right)\)
Vậy PT có nghiệm duy nhất x = 26.
2 ĐK: \(3\le x\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=0\\\sqrt{x-3}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Từ điều kiện và bài giải ta kết luận PT vô nghiệm.
3 ĐK: \(x\ge4\)
\(\Leftrightarrow\sqrt{x-4}=7-2=5\\ \Leftrightarrow x-4=5^2=25\\ \Leftrightarrow x=25+4=29\left(tm\right)\)
Vậy PT có nghiệm duy nhất x = 29.
4
ĐK: \(x\ge1\)
Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)
Khi đó:
\(x-\sqrt{x-2\sqrt{x-1}}=0\\ \Leftrightarrow t^2+1-\sqrt{t^2-2t+1}=0\\ \Leftrightarrow t^2+1-\sqrt{\left(t-1\right)^2}=0\\ \Leftrightarrow t^2+1-\left|t-1\right|=0\left(1\right)\)
Trường hợp 1:
Với \(0\le t< 1\) thì:
\(\left(1\right)\Leftrightarrow t^2+1-\left(1-t\right)=0\\ \Leftrightarrow t^2+t=0\\ \Leftrightarrow t\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-1}=0\Rightarrow x=1\left(nhận\right)\\t=-1\left(loại\right)\end{matrix}\right.\)
Trường hợp 2:
Với \(t\ge1\) thì:
\(\left(1\right)\Leftrightarrow t^2+1-\left(t-1\right)=0\\ \Leftrightarrow t^2-t+2=0\)
\(\Delta=\left(-1\right)^2-4.2=-7< 0\)
=> Loại trường hợp 2.
Vậy PT có nghiệm duy nhất x = 1.
5
ĐK: \(x\ge2\)
Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)
Khi đó:
\(\sqrt{x-2}-\sqrt{x^2-2x}=0\\ \Leftrightarrow\sqrt{x-2}-\sqrt{x}.\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{t^2+2-2}-\sqrt{t^2+2}.\sqrt{t^2+2-2}=0\\ \Leftrightarrow\sqrt{t^2}-\sqrt{t^2+2}.\sqrt{t^2}=0\\ \Leftrightarrow t-\sqrt{t^2+2}.t=0\\ \Leftrightarrow t\left(1-\sqrt{t^2+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-2}=0\Rightarrow x=2\left(tm\right)\\\sqrt{t^2+2}=1\Rightarrow t^2+2=1\Rightarrow t^2=-1\left(loại\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất x = 2.
6 Không có ĐK vì đưa về tổng bình lên luôn \(\ge0\)
\(\Leftrightarrow\sqrt{\sqrt{2}^2-2.\sqrt{2}.\sqrt{1}+\sqrt{1}^2}-\sqrt{x^2+2x.\sqrt{2}+\sqrt{2}^2}=0\\ \Leftrightarrow\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}-\sqrt{\left(x+\sqrt{2}\right)^2}=0\\ \Leftrightarrow\left|\sqrt{2}-\sqrt{1}\right|-\left|x+\sqrt{2}\right|=0\\ \Leftrightarrow\sqrt{2}-1-\left|x+\sqrt{2}\right|=0\)
Trường hợp 1:
Với \(x\ge-\sqrt{2}\) thì:
\(\left(1\right)\Leftrightarrow\sqrt{2}-1-\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1-x-\sqrt{2}=0\\ \Leftrightarrow-1-x=0\\ \Leftrightarrow x=-1\left(tm\right)\)
Với \(x< -\sqrt{2}\) thì:
\(\left(1\right)\Leftrightarrow\sqrt{2}-1--\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1+x+\sqrt{2}=0\\ \Leftrightarrow2\sqrt{2}+1+x=0\\ \Leftrightarrow x=-1-2\sqrt{2}\left(tm\right)\)
Vậy phương trình có 2 nghiệm \(x=-1\) hoặc \(x=-1-2\sqrt{2}\)
Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
Kiểu dạng bài này là thường dưới căn cùng phép tính để đặt ẩn nên mình nghĩ là \(\sqrt{x+2\sqrt{x-1}}\) ...... mới đúng, còn nếu không phải thì bảo mình nhé và cách làm thì nó cũng giống cách mình làm thôi: )
ĐK: \(x\ge1\)
Đặt \(\sqrt{x-1}=t\left(t\ge0\right)\Rightarrow x=t^2+1\)
PT trở thành:
\(\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=t+8\\ \Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=t+8\\ \Leftrightarrow\left|t+1\right|+\left|t-1\right|=t+8\left(1\right)\)
Với \(0\le t< 1\) có:
(1) \(\Leftrightarrow t+1+1-t-t-8=0\)
\(\Leftrightarrow-6-t=0\\ \Leftrightarrow t=-6\left(loại\right)\)
Với \(t\ge1\) có:
(1) \(\Leftrightarrow t+1+t-1-t-8=0\)
\(\Leftrightarrow t-8=0\\ \Leftrightarrow t=8\left(nhận\right)\)
\(\Rightarrow x=t^2+1=8^2+1=64+1=65\)
Vậy nghiệm của PT là `x=65`