Cho đường tròn tâm O Lấy điểm E nằm bên ngoài đường tròn vẽ tiếp tuyến EA, EB;vẽ cát tuyến ECD
a, EAOB nội tiếp
b,AB cắt EO tại F . Chứng minh OE vuông góc AB
c,EF.EO = EC.ED
Giúp mình câu c với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
Xét (O) có
ΔBCE nội tiếp đường tròn
BE là đường kính
Do đó: ΔBCE vuông tại C
Suy ra: BC\(\perp\)CE(4)
từ (3) và (4) suy ra OA//CE
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
hay AM là đường cao của ΔAEB
Xét ΔAEB vuông tại A có AM là đường cao
nên \(\dfrac{1}{EA^2}+\dfrac{1}{AB^2}=\dfrac{1}{AM^2}\)
hay \(\dfrac{1}{EA^2}+\dfrac{1}{4R^2}=\dfrac{1}{AM^2}\)
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB^2=AE*AD
a: Xét ΔOBA và ΔOCA có
OB=OC
OA chung
BA=CA
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}\)
\(\Leftrightarrow\widehat{OCA}=90^0\)
hay AC\(\perp\)OC tại C
Xét (O) có
OC là bán kính
AC\(\perp\)OC tại C
Do đó: AC là tiếp tuyến của (O)
b: Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2)suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
Xét (O) có
ΔBCE nội tiếp đường tròn
BE là đường kính
Do đó: ΔBCE vuông tại C
hay BC\(\perp\)CE(4)
Từ (3) và (4) suy ra CE//OA
a: Xét tứ giác OASB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
Do đó: OASB là tứ giác nội tiếp
c: ΔOAE vuông tại A có AF là đường cao
nên EF*EO=EA^2
Xét ΔEAC và ΔEDA có
góc EAC=góc EDA
góc AEC chung
Do đó: ΔEAC đồng dạng với ΔEDA
=>EA/ED=EC/EA
=>EA^2=ED*EC
=>ED*EC=EF*EO