[2x-1]mũ 2=36 giải giúp mình với mình càn gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\left(5x+1\right)^2=\frac{36}{49}\)
\(\Rightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(\Rightarrow5x+1=\frac{6}{7}\)
\(\Rightarrow5x=\frac{-1}{7}\)
\(\Rightarrow x=\frac{-1}{35}\)
#include <bits/stdc++.h>
using namespace std;
int main()
{
long long a,c,tam;
cin>>a>>c;
cout<<"a truoc khi doi la:"<<a<<endl;
cout<<"c truoc khi doi la:"<<c<<endl;
tam=a;
a=c;
c=tam;
cout<<"a sau khi doi la:"<<a<<endl;
cout<<"c sau khi doi la:"<<c<<endl;
return 0;
}
a) 1 + 3 + 5 + ... + 13
= (13 + 1).[(13 - 1) : 2 + 1] : 2
= 14 . 7 : 2
= 49
= 7²
b) 3² + 4² + 12²
= 9 + 16 + 144
= 169
= 13²
\(\left(\dfrac{1}{4}\right)^{2n}=\left(\dfrac{1}{8}\right)^2\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2.2n}=\left(\dfrac{1}{2}\right)^{3.2}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{4n}=\left(\dfrac{1}{2}\right)^6\)
\(\Rightarrow4n=6\)
\(\Rightarrow n=\dfrac{6}{4}=\dfrac{3}{2}\)
\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{8}\right)^2\)
\(=>\left(\dfrac{1}{2}\right)^n=\left[\left(\dfrac{1}{2}\right)^3\right]^2\)
\(=>\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^6\)
\(\Rightarrow n=6\)
1. 2x=16\(\Rightarrow\)X=4
2. 22x-1=27
\(\Rightarrow\)27=22.4-1
Vậy x =4
Bài 3:
1: =>2x=-5/3-1/2=-10/6-3/6=-13/6
hay x=-13/12
2: =>3/5x=1/7+3/5=5/35+21/35=26/35
hay x=26/3
3: =>-3x=5/6+3/4=10/12+9/12=19/12
hay x=-19/36
4: =>1/2x=3/7-5/4=12/28-35/28=-23/28
hay x=-23/14
5: =>1/4x=-3/5-7/5=-2
hay x=-8
6: =>3x=1/42+1/7=1/42+6/42=1/7
hay x=1/21
`(2x - 1)^2 = 36`
`(2x - 1)^2 = 6^2` hoặc `(2x - 1)^2 = (-6)^2`
`2x - 1 = 6` hoặc `2x - 1 = -6`
`2x = 6 + 1` hoặc `2x = -6 + 1`
`2x = 7` hoặc `2x = -5`
`x = 7 : 2` hoặc `x = -5 : 2`
`x = 3,5` hoặc `x = -2,5`
\(\left(2x-1\right)^2=36\)
\(\Rightarrow\left(2x-1\right)^2=6^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)