K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

B’, C’ lần lượt là trung điểm của AB, AC nên B’C’ là đường trung bình của tam giác ABC

\( \Rightarrow B'C' // BC\)

\( \Rightarrow \Delta A'B'C' \backsim \Delta ABC\)

14 tháng 12 2022

a: Xét ΔCAB có CE/CA=CD/CB

nên ED//AB và ED=AB/2

=>AEDB là hình thang

mà góc EAB=90 độ

nênAEDB là hình thang vuông

b: Xét tứ giác ABKC có

D là trung điểm chung của AK và BC

góc BAC=90 độ

Do đó: ABKC là hình chữ nhật

Bổ sung đề: D và E lần lượt là trung điểm của AB và AC

a) Ta có: \(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)

\(AE=EC=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AD=DB=AE=EC

Xét ΔABE và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(cmt)

Do đó: ΔABE=ΔACD(c-g-c)

b) Ta có: ΔABE=ΔACD(cmt)

nên BE=CD(hai cạnh tương ứng)

c) Xét ΔDBC và ΔECB có

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

Suy ra: \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)

nên ΔKBC cân tại K(Định lí đảo của tam giác cân)

d) Xét ΔABK và ΔACK có 

AB=AC(ΔABC cân tại A)AK chung

BK=CK(ΔKBC cân tại K)Do đó: ΔABK=ΔACK(c-c-c)

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)

mà tia AK nằm giữa hai tia AB,AC

nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)

a) Ta có: \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

\(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AD=AE

Xét ΔABE và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(cmt)

Do đó: ΔABE=ΔACD(c-g-c)

4 tháng 3 2021

Bài này dễ đợi mình !

17 tháng 10 2021

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình củaΔBAC

Suy ra: EF//BC

10 tháng 12 2021

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có 

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: AM=ED/2

AN=BC/2

mà ED=BC

nên AM=AN

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MNCB là hình thang

b: Xét tứ giác MNCD có 

MN//CD

MN=CD

Do đó: MNCD là hình bình hành

c: Xét tứ giác ADCE có 

N là trung điểm của AC
N là trung điểm của DE

Do đó:ADCE là hình bình hành