K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2023

a) n + 9 ⋮ n - 1

⇒ n - 1 + 10 ⋮ n - 1

⇒ 10 ⋮ n - 1

⇒ n - 1 ϵ Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10} 

⇒ n ϵ {2; 0; 3; -1; 6; -4; 11; -9} 

b) n + 5 ⋮ 2n + 3 

⇒ 2(n + 5) ⋮ 2n + 3 

⇒ 2n + 10 ⋮ 2n + 3

⇒ 2n + 3 + 7 ⋮ 2n + 3

⇒ 7 ⋮ 2n + 3

⇒ 2n + 3 ϵ Ư(7) = {1; -1; 7; -7}

⇒ n ϵ {-1; -2; 2; -5} 

c) 2n + 4 ⋮ n + 6 

⇒ 2n + 12 - 8 ⋮ n + 6

⇒ 2(n + 6) - 8 ⋮ n + 6

⇒ 8 ⋮ n + 6

⇒ n + 6 ϵ Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}

⇒ n  ϵ {-5; -7; -4; -8; -2; -10; 2; -14} 

13 tháng 1 2023

a) Ta có : n+1⋮ n+1

⇒[(n+6)-(n+1)]⋮n+1

⇒5⋮n+1

⇒n+1ϵ {-1;1;5;-5}

⇒nϵ{0;-2;4;-6}

b) Ta có :2(2n+1)⋮2n+1⇔4n+2⋮2n+1

Mà 4n+9⋮2n+1

⇒[(4n+9)-(4n+2)]⋮2n+1

⇒7⋮2n+1⇔2n+1ϵ{-1;1;-7;7}

2n+1

1 -1 -7 7
2n 0 -2 -8 6
n 0 -1 -4 3

c)Ta có : 2(n-1)⋮n-1⇔2n-2⋮n-1

⇒[(2n)-(2n-2)]⋮n-1

⇒2⋮n-1⇔n-1ϵ{1;-1;-2;2}

n-1 1 -1 2 -2
n 2 0 3 -1
         

d)n+4⋮n+1

⇒[(n+4)-(n+1)]⋮n+1

⇒3⋮n+1⇔n+1ϵ{1;-1;3;-3}

n+1 1 -1 3 -3
n 0 -2 2 -4

 

25 tháng 10 2015

a) 2 + 4 + 6 + ... +  2n = 210 

1.2 + 2.2 + 2.3 + ... + 2n = 210

2.(1+2+3+...+n) = 210

1 + 2 + 3 + ... + n = 105

\(\frac{n\left(n+1\right)}{2}\)= 105

n(n+1) = 210

n(n+1) = 14.15

=> n = 14

30 tháng 7 2016

b) 1+3+5+...+(2n-1)=225

\(\frac{\left(2n-1+1\right).n}{2}\)  =225

\(\frac{2n.n}{2}\) =225

\(\frac{2.n^2}{2}\)     =225

\(n^2\) =225

Ta có: \(n^2\)  =225  = \(3^2\).\(5^2\)\(\left(15\right)^2\)

=> n = 15

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

4 tháng 3 2019

30 tháng 7 2017

a, Vì (n+3) ⋮ (n+3) nên để (n+8) ⋮ (n+3) thì: [(n+8) - (n+3)] ⋮ (n+3) hay 5 ⋮ (n+3), Suy ra: n+3 ∈ {1;5}

Vì n + 3 ≥ 3 nên n + 3 = 5 => n = 2

Vậy n = 2

b, Vì 3(n+4) ⋮ (n+4) nên để (16 - 3n)(n+4) thì: [(16 - 3n)+3(n+4)](n+4) hay 28 ⋮ (n+4)

Suy ra: n+4{1;2;4;7;14;28}

Vì 0 ≤ n ≤6 nên 4 ≤ n+4 ≤ 10.

Từ đó ta có: n+4{4;7} hay n{0;3}

c, Vì 5(9 - 2n) ⋮ (9 - 2n) nên nếu (5n+2)(9 - 2n) thì 2(5n+2)(9 - 2n)

Suy ra: [5(9 - 2n)+2(5n+2)](9 - 2n) hay 49(9 - 2n) => 9 - 2n ∈ {1;7;49}

Vì 9 - 2n ≤ 9 nên 9 - 2n{1;7}

Từ đó ta có n{4;1} với n < 5

Thử lại ta thấy n = 4 hoặc n = 1 đều thõa mãn.

Vậy n{4;1}

27 tháng 9 2015

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá 

19 tháng 6 2019

a, 2 + 4 + 6 + … + 2n =  2 + 2 n n 2 = n(n+1)

Ta có n(n+1) = 210. Ta phân tích số 210 ra thừa số nguyên tố rồi ghép các thừa số lại để được tích của hai số tự nhiên liên tiếp.

210 = 2.3.5.7 = (2.7).(3.5) = 14.15

n(n+1) = 14.15

Vậy n = 14

b, 1 + 3 + 5 +…+ (2n – 1) =  1 + 2 n - 1 2 = n 2

Ta có:  n 2 = 225 n 2 = 3 2 . 5 2 = 15 2

=> n = 15

Vậy n = 15