K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1.       Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:1.  a)  5 – (x – 6) = 4(3 – 2x)               b)  2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)     c)  7 – (2x + 4) = – (x + 4)             d)  (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3     e)  (x + 1)(2x – 3) = (2x – 1)(x + 5) f)  (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)     g)  (x – 1) – (2x – 1) = 9 – x           h)  (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2           i)  x(x + 3)2 – 3x = (x + 2)3 + 1      j)   (x +...
Đọc tiếp

Bài 1.       Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:

1.  a)  5 – (x – 6) = 4(3 – 2x)               b)  2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

     c)  7 – (2x + 4) = – (x + 4)             d)  (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

     e)  (x + 1)(2x – 3) = (2x – 1)(x + 5) f)  (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

     g)  (x – 1) – (2x – 1) = 9 – x           h)  (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2      

     i)  x(x + 3)2 – 3x = (x + 2)3 + 1      j)   (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

2. a)                             b)

c)                        d)

     e)                        f)

     g)                  h)

     i)              k)

     m)                    n)

2
1 tháng 2 2022

bạn đăng tách cho mn cùng giúp nhé 

Bài 1 : 

a, \(\Leftrightarrow11-x=12-8x\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

b, \(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\Leftrightarrow x=-2\)

c, \(\Leftrightarrow3-2x=-x-4\Leftrightarrow x=7\)

d, \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)

\(\Leftrightarrow3x^2+12x-9=3x^2+3x+1\Leftrightarrow x=\dfrac{10}{9}\)

e, \(\Leftrightarrow2x^2-x-3=2x^2+9x-5\Leftrightarrow x=5\)

f, \(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x-22\)

\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\Leftrightarrow3x=-21\Leftrightarrow x=-7\)

1 tháng 2 2022

Cảm ơn bạn nhiều ạ 

 

12 tháng 2 2022

A,

undefined

a: \(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)

=>-6x-5=0

=>-6x=5

hay x=-5/6

b: \(\Leftrightarrow2x^3+8x^2+8x-8x^2-2x^3+16=0\)

=>8x+16=0

hay x=-2

c: \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1-x^3-3x^2-3x-1=0\)

=>9x-10=0

hay x=10/9

d: \(\Leftrightarrow10x-15-20x+28=19-2x^2-4x-2\)

\(\Leftrightarrow-10x+13+2x^2+4x-17=0\)

\(\Leftrightarrow2x^2-6x-4=0\)

\(\Leftrightarrow x^2-3x-2=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=9+8=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

18 tháng 7 2021

\(a,=>x^3-2x^2+4x+2x^2-4x+8-x^3+2x-15=0\)

\(< =>2x-7=0< =>x=\dfrac{7}{2}\)

b,\(=>x\left(x^2-25\right)-\left(x+2\right)\left(x^2-2x+4\right)-3=0\)

\(< =>x^3-25x-x^3+2x^2-4x-2x^2+4x-8-3=0\)

\(< =>-25x-11=0\)

\(< =>x=-0,44\)

18 tháng 7 2021

cảm ơn bạn nhiều nha!

 

13 tháng 4 2018

Đáp án B

3 tháng 5 2019

10 tháng 2 2018

a) 2(x + 3)(x – 4) = (2x – 1)(x + 2) – 27

⇔ 2(x2 – 4x + 3x – 12) = 2x2 + 4x – x – 2 – 27

⇔ 2x2 – 2x – 24 = 2x2 + 3x – 29

⇔ -2x – 3x = 24 – 29

⇔ - 5x = - 5 ⇔ x = -5/-5 ⇔ x = 1

Tập nghiệm của phương trình : S = {1}

b) x2 – 4 – (x + 5)(2 – x) = 0

⇔ x2 – 4 + (x + 5)(x – 2) = 0 ⇔ (x – 2)(x + 2 + x + 5) = 0

⇔ (x – 2)(2x + 7) = 0 ⇔ x – 2 = 0 hoặc 2x + 7 = 0

⇔ x = 2 hoặc x = -7/2

Tập nghiệm của phương trình: S = {2; -7/2 }

c) ĐKXĐ : x – 2 ≠ 0 và x + 2 ≠ 0 (khi đó : x2 – 4 = (x – 2)(x + 2) ≠ 0)

⇔ x ≠ 2 và x ≠ -2

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 4x + 4 – x2 + 4x – 4 = 4

⇔ 8x = 4 ⇔ x = 1/2( thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {1/2}

d) ĐKXĐ : x – 1 ≠ 0 và x + 3 ≠ 0 (khi đó : x2 + 2x – 3 = (x – 1)(x + 3) ≠ 0)

⇔ x ≠ 1 và x ≠ -3

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 3x + x + 3 – x2 + x – 2x + 2 + 4 = 0

⇔ 3x = -9 ⇔ x = -3 (không thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = ∅

15 tháng 5 2021

\(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)

\(< =>2\left(x^2-x-12\right)=2x^2+3x-2-27\)

\(< =>2x^2-2x-24=2x^2+3x-2-27\)

\(< =>5x=-24+29=5\)

\(< =>x=\frac{5}{5}=1\)

b) Đặt \(x^2+2x+3=a\)(a>0)

Ta có: \(\dfrac{x^2+2x+7}{\left(x+1\right)^2+2}=x^2+2x+4\)

\(\Leftrightarrow\dfrac{x^2+2x+7}{x^2+2x+1+2}=x^2+2x+4\)

\(\Leftrightarrow\dfrac{x^2+2x+7}{x^2+2x+3}=x^2+2x+4\)

\(\Leftrightarrow\dfrac{a+4}{a}=a+1\)

\(\Leftrightarrow a^2+a=a+4\)

\(\Leftrightarrow a^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-2\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2+2x+3=2\)

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

27 tháng 2 2021

ĐKXĐ của cả 2 pt trên đều là `x in RR`

`a,1/(x^2-2x+2)+2/(x^2-2x+3)=6/(x^2-2x+4)`

Đặt `a=x^+2x+3(a>=2)` ta có:

`1/(a-1)+2/a=6/(a+1)`

`<=>a(a+1)+2(a-1)(a+1)=6a(a-1)`

`<=>a^2+a+2(a^2-1)=6a^2-6a`

`<=>a^2+a+2a^2-2=6a^2-6a`

`<=>3a^2-5a+2=0`

`<=>3a^2-3a-2a+2=0`

`<=>3a(a-1)-2(a-1)=0`

`<=>(a-1)(3a-2)=0`

`a>=2=>a-1>=1>0`

`a>=2=>3a-2>=4>0`

Vậy pt vô nghiệm

`(x^2+2x+7)/((x+1)^2+2)=x^2+2x+4`

`<=>(x^2+2x+7)=(x^2+2x+4)(x^2+2x+3)`

Đặt `a=x^2+2x+3(a>=2)`

`pt<=>a+4=a(a+1)`

`<=>a^2+a=a+4`

`<=>a^2=4`

`<=>a=2` do `a>=2`

`<=>(x+1)^2+2=2`

`<=>(x+1)^2=0`

`<=>x=-1`

Vậy `S={-1}`

a: Ta có: \(x\left(2-x\right)+\left(x^2+x\right)=7\)

\(\Leftrightarrow2x-x^2+x^2+x=7\)

\(\Leftrightarrow3x=7\)

hay \(x=\dfrac{7}{3}\)

b: Ta có: \(\left(2x+1\right)^2-x\left(4-5x\right)=17\)

\(\Leftrightarrow4x^2+4x+1-4x+5x^2=17\)

\(\Leftrightarrow9x^2=16\)

\(\Leftrightarrow x^2=\dfrac{16}{9}\)

hay \(x\in\left\{\dfrac{4}{3};-\dfrac{4}{3}\right\}\)