K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2023

\(A=x-x^2-1\)

\(A=-\left(x^2-x+1\right)\)

\(A=-\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)

Và: \(-\dfrac{3}{4}< 0\)

\(\Rightarrow A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)

15 tháng 7 2017

a,=(x\(^2\)-6x+9)+10-9

=(x-3)\(^2\)+1

Mà(x-3)\(^2\)\(\ge\)0

nên (x-3)\(^2\)+1>0

b,=  -(-4x+x\(^2\))-5

=    -(4-4x+x\(^2\))-5+4

=     -(2-x)\(^2\)-1

Mà  -(2-x)\(^2\)\(\le\)0

nên -(2-x)\(^2\)-1<   0

16 tháng 7 2017

Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :)  Thankssssss 

21 tháng 8 2018

Ta có:\(-x^2+4x-7\)

\(=-\left(x^2-4x+7\right)\)

\(=-\left(x^2-2.x.2+2^2-4+7\right)\)

\(=-\left[\left(x-2\right)^2+3\right]\)

\(=-\left(x-2\right)^2-3\)

Do \(-\left(x-2\right)^2\le0\) với \(\forall x\)

\(\Rightarrow-\left(x-2\right)^2-3\le-3< 0\)

\(\Rightarrow-x^2+4x-7< 0\) (đpcm)

câu b,c đề sai bạn nhé!

24 tháng 4 2020

\(x\left(x-\frac{1}{3}\right)< 0\)

Để \(x\left(x-\frac{1}{3}\right)< 0\)thì x và \(x-\frac{1}{3}\)trái dấu nhau

Thấy \(x>x-\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}x>0\\x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}\Leftrightarrow}0< x< \frac{1}{3}}\)

4 tháng 10 2019

Bạn ơi chứng minh nhỏ hơn hoặc bằng 0 nhé

\(=-y^{2018}-\left(x^2-x+1\right)\)

\(=-y^{2018}-\left(x+1\right)^2\)

Vì \(\hept{\begin{cases}-y^{2018}\le0;\forall x,y\\-\left(x+1\right)^2\le0;\forall x,y\end{cases}}\)

\(\Rightarrow-y^{2018}-\left(x+1\right)^2\le0;\forall x,y\left(đpcm\right)\)

19 tháng 11 2018

vì \(\left(x+1\right)< \left(x+2\right)\)

để \(\left(x+1\right).\left(x+2\right)>0\)

=> \(\hept{\begin{cases}x+1< 0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>-2\end{cases}}}\)

=> ko có giá trị x t/mãn

b) 

để \(\left(x-2\right).\left(x+\frac{2}{3}\right)>0\)

=> \(\hept{\begin{cases}x-2>0\\\left(x+\frac{2}{3}\right)\end{cases}>0}hay\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}hay\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)

vậy \(x>2,x< -\frac{2}{3}\)

19 tháng 11 2018

eei dòng thứ hai ấy tớ viết lộn nha :))

\(\left(x+1\right).\left(x+2\right)< 0\)