Tại sao đa thức không không có bậc?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Giả sử, cho hai đa thức biết:
- Trong đa thức thứ nhất: hệ số a của đơn thức \(a{x^4}\) .
- Trong đa thức thứ hai: hệ số \( - a\)của đơn thức \( - a{x^4}\).
Như vậy, bậc của tổng của hai đa thức sẽ là bậc 3. (Vì khi cộng hai đa thức với nhau, ta có \(a + ( - a) = 0\) nên biến với số mũ là 4 sẽ không còn).
Vậy bạn Minh nói như vậy là không đúng.
* Giả sử, cho hai đa thức biết:
- Trong đa thức thứ nhất: hệ số a của đơn thức \(a{x^4}\) .
- Trong đa thức thứ hai: hệ số \(a\)của đơn thức \(a{x^4}\).
Như vậy, bậc của hiệu của hai đa thức sẽ là bậc 3. (Vì khi trừ hai đa thức với nhau, ta có \(a - a = 0\) nên biến với số mũ là 4 sẽ không còn).
Vậy bạn Quân nói như vậy là không đúng.
Giả sử tồn tại 1 đa thức bậc 2 hệ số nguyên nhận \(\sqrt[3]{3}\)là nghiệm . Gọi đa thức đó là \(ax^2+bx+c=0\)( a khác 0)
=> \(a\left(\sqrt[3]{3}\right)^2+b\left(\sqrt[3]{3}\right)+c=0\)
do a , b,c nguyên => vô lý
=> giả sử sai
Đáp án : D
Không có bậc V hoặc cao hơn vì : Không đủ năng lượng để duy trì bậc dinh dưỡng thứ V
Hiệu suất giữa 2 bậc dinh dưỡng liền kề là xấp xỉ 10%
Do đó đến sinh vật tiêu thụ bậc IV ( bậc dinh dưỡng thứ V ) , năng lượng tích lũy được xấp xỉ (0,1)4 = 0,0001 - đã là rất nhỏ rồi
Bậc nhỏ nhất của đa thức \(P\left(x\right)\)là \(3.2=6\).
\(x=\sqrt[3]{2}+\sqrt{2}\)
\(\Leftrightarrow x-\sqrt{2}=\sqrt[3]{2}\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)^3=2\)
\(\Leftrightarrow x^3-3\sqrt{2}x^2+6x-2\sqrt{2}=2\)
\(\Leftrightarrow x^3+6x-2=3\sqrt{2}x^2+2\sqrt{2}\)
\(\Leftrightarrow\left(x^3+6x-2\right)^2=2\left(3x^2+2\right)^2\)
\(\Leftrightarrow x^6+36x^2+4+12x^4-24x-4x^3=18x^4+24x^2+8\)
\(\Leftrightarrow x^6-6x^4-4x^3+12x^2-24x-4=0\)
\(P\left(x\right)=x^6-6x^4-4x^3+12x^2-24x-4\)
Nếu đa thức trên có nghiệm hữu tỉ thì nghiệm có có dạng \(\frac{p}{q}\)với \(p\)là ước của \(-4\)và \(q\)là ước của \(1\).
Nên có thể là các giá trị \(\left\{-4,-2,-1,1,2,4\right\}\).
Ta thử các giá trị trên đều thấy không phải là nghiệm của \(P\left(x\right)\).
Do đó đa thức đó không có nghiệm hữu tỉ.
Lúc này phép chia không thực hiện được nữa vì bậc của đa thức -6x + 10 (là 1) nhỏ hơn bậc của đa thức chia x2 + 1 (là 2)
Vì đa thức không, không có đơn thức nào trong đó. (đa thức không còn gọi là đa thức hằng hay là hằng số)
Vì đa thức ko , ko có đơn thức nào trong đó