Cho 9 đường thẳng trong đó không có 2 đường thẳng nào song song. CMR ít nhất cũng có 2 đường thẳng mà góc nhọn giữa chúng không nhỏ hơn \(20^0\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ 9 đường thẳng khác song song với nhau và chúng cắt nhau tại một điểm nào đó.
9 đường thẳng cùng giao nhau tại 1 điểm nên tạo ra 18 góc kg có điểm chung và mỗi góc tương ướng với góc nằm giữa hai đường thẳng trong số 9 đường thẳng đã cho đó.
tổng 18 góc đó luôn lớn hơn hoặc bằng 360 độ
gọi a là góc đó ta có:
18.a lớn hơn hoặc bằng 360 độ suy ra a luôn lớn hơn hoạc bằng 20 độ
Vậy 2 đường thẳng tạo nên 1 góc luôn không nhỏ hơn 20 độ
The end
Lấy điểm O tuỳ ý.Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho. 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung, mỗi góc này tương ứng bằng góc giữa hai đường thẳng trong số 9 đương thẳng đã cho. Tổng số đo của 18 góc đỉnh O là 3600 do đó ít nhất có 1 góc không nhỏ hơn 3600 : 18 = 200 , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 200 .
Do 9 đường thẳng đó không có 2 đt nào song song. Gọi các đường thẳng đó là a, b, c, d, e, f, g, h, i. Gọi I là giao điểm của a và b.
Nếu 7 đt còn lại đi qua I coi nhu bài toán được giải quyết vì khi đó xuất hiện 18 góc nhỏ chính là 9 cặp góc đối đỉnh. Mà số đo góc I = 360 độ. Vậy 360:18 = 20 độ. Điều này chứng tỏ có ít nhất 2 góc nhỏ hơn hoặc bằng 20 độ.Hay 2 đường thẳng mà góc nhọn giữa chúng nhỏ hơn hoặc bằng 20 độ.
Nếu 7 đường thẳng đó chưa đi qua I. Ta tiến hành tạo ra các đường thẳng song song với 7 đường trên nhưng đi qua I. Lúc này lời giải tương tự trên
Lưu ý: Đề cần cải chính một chút là nhỏ thua hoặc bằng 20 độ. Trường hợp đặc biệt khi các đường thẳng đó lần lượt quay quanh I một góc 20 độ thì ta có 18 góc bảng nhau và bằng 20 độ mà không nhỏ hơn 20 độ.
Lấy điểm O tùy ý.
Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho. 9 đường thẳng qua O tạo thành 18 góc không có điểm chung, mỗi góc này tương ứng = góc giữa 2 đường thẳng trong số 9 đường thẳng đã cho.
Tổng số đo 18 góc đỉnh O là 360o do đó có ít nhất có 1 góc ko nhỏ hơn:
360o : 18 = 20o
=> Ít nhất cx có 2 đường thẳng mà góc nhọn giữa chúng ko nhỏ hơn 20o
Có 9 đường thẳng trong đó không có 2 đường thẳng nào song song nên 9 đường thẳng đó cắt nhau, tạo thành 18 góc nhọn không có điểm trong chung
Giả sử 18 góc đó đều nhỏ hơn 20o thì tổng 18 góc đó < 18.20o = 360o, vô lý vì tổng 18 góc đó = 360o
=> điều giả sử là sai
Vậy ít nhất cũng có 2 đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20 độ (hay \(\ge\) 20o)
Lấy điểm O tuỳ ý.
Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho. 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung, mỗi góc này tương ứng bằng góc giữa hai đường thẳng trong số 9 đương thẳng đã cho.
Tổng số đo của 18 góc đỉnh O là 3600 do đó ít nhất có 1 góc không nhỏ hơn 3600 : 18 = 200 , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 200 .
Lấy điểm O tuỳ ý.Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho. 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung, mỗi góc này tương ứng bằng góc giữa hai đường thẳng trong số 9 đương thẳng đã cho. Tổng số đo của 18 góc đỉnh O là 3600 do đó ít nhất có 1 góc không nhỏ hơn 3600 : 18 = 200 , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 200 .
Lấy điểm O tuỳ ý.
Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho. 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung, mỗi góc này tương ứng bằng góc giữa hai đường thẳng trong số 9 đương thẳng đã cho.
Tổng số đo của 18 góc đỉnh O là 3600 do đó ít nhất có 1 góc không nhỏ hơn 3600 : 18 = 200 , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 200 .
Do 9 đường thẳng đó không có 2 đt nào song song. Gọi các đường thẳng đó là a, b, c, d, e, f, g, h, i. Gọi I là giao điểm của a và b.
Nếu 7 đt còn lại đi qua I coi nhu bài toán được giải quyết vì khi đó xuất hiện 18 góc nhỏ chính là 9 cặp góc đối đỉnh. Mà số đo góc I = 360 độ. Vậy 360:18 = 20 độ. Điều này chứng tỏ có ít nhất 2 góc nhỏ hơn hoặc bằng 20 độ.Hay 2 đường thẳng mà góc nhọn giữa chúng nhỏ hơn hoặc bằng 20 độ.
Nếu 7 đường thẳng đó chưa đi qua I. Ta tiến hành tạo ra các đường thẳng song song với 7 đường trên nhưng đi qua I. Lúc này lời giải tương tự trên
Lưu ý: Đề cần cải chính một chút là nhỏ thua hoặc bằng 20 độ. Trường hợp đặc biệt khi các đường thẳng đó lần lượt quay quanh I một góc 20 độ thì ta có 18 góc bảng nhau và bằng 20 độ mà không nhỏ hơn 20 độ.