K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

Ta có: abc > 0 nên xảy ra 2 trường hợp hoặc là a,b,c đều dương (bài toán được chứng minh) hoặc trong 3 số sẽ có 2 số âm 1 số dương.

Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a< 0\\b< 0\\c>0\end{cases}}\)

Ta đặt: \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\) thì theo đề bài ta có

\(\hept{\begin{cases}c-x-y>0\\xy-cx-xy>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}c>x+y\left(1\right)\\xy>cx+cy\left(2\right)\end{cases}}\)

Từ (1) ta có thể suy ra được: \(\hept{\begin{cases}cx>x^2+xy\\cy>y^2+xy\end{cases}}\)

\(\Rightarrow cx+cy>x^2+2xy+y^2\left(3\right)\)

Từ (2) và (3) ta có: \(xy>cx+cy>x^2+2xy+y^2\)

\(\Leftrightarrow0>x^2+xy+y^2\) (sai)

Từ đây ta thấy rằng chỉ có trường hợp \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\) là đúng

3 tháng 2 2017

Rõ rảng abc > 0 nên a,b,c phải khác 0 
+ Giả sử trong a,b,c có 1 số bé hơn 0,vì vai trò a,b,c như nhau giả sử là a ta có 
a < 0 ,do abc > 0 => bc < 0 do a(b + c) + bc > 0 => a(b + c) > -bc hay a(b + c) > 0 do a < 0 => b + c < 0 
=> a + b + c < 0 mâu thuẫn với 1 giả thiết a + b + c > 0 
+ Giả sử có 2 số nhỏ hơn không,tương tự giả sử là a và b ta có 
a + b + c > 0 => c > 0 => abc < 0 mâu thuẫn 
+ còn a,b,c đều nhỏ hơn 0 thì hiển nhiên a + b + c < 0 mâu thuẫn với a + b + c > 0 
Vậy bất buộc cả 3 a,b,c đều phải đồng thời lớn hơn 0

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=0\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)=0\)

\(\Leftrightarrow2.\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)=-\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)

Mà \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}>0\)

\(\Rightarrow2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)< 0\)

\(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}< 0\left(đpcm\right)\)

(Dấu"=" không xảy ra bạn nhé)

 

14 tháng 11 2021

Thanks bạn

30 tháng 9 2016

bạn có chép sai đề ko

30 tháng 9 2016

Từ a+b+c=0 =>c=-a-b.thay vào có:

b+bc+ca= ab-(a+b)^2= -(a^2+ab+b^2)= -1/2[(a+b)^2+a^2+b^2)]
vì (a+b)^2>=0, a^2>=0,b^2>=0 nên biểu thức này luôn luôn =<0.

Dấu = xảy ra khi a=b=c=0.

28 tháng 10 2018

đề sai rồi.vd:5,-1,-2

8 tháng 9 2019

Ta có:  a b < a + c b + c

⇔ a(b + c) < (a + c)b

(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)

⇔ ab + ac < ab + bc

⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)

8 tháng 2 2016

ta có (a+b)(b+c)(c+a)+abc

=abc+b2c+ac2+bc2+a2b+ab2+a2c+abc+abc

=(abc+b2c+ab2)+(abc+ac2+bc2)+(abc+a2c+a2b)

=b(a+b+c)+c(a+b+c)+a(a+b+c)=0