K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2023

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

30 tháng 8 2023

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

21 tháng 9 2023

\(A=\left|x+1\right|-3\\ min_A=-3.khi.x+1=0\Leftrightarrow x=-1\\ B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\\ max_B=-\dfrac{1}{4}.khi.\left(x-\dfrac{3}{7}\right)=0\Leftrightarrow x=\dfrac{3}{7}\)

22 tháng 9 2023

a)

A = |x + 1| - 3 ≥ 0 - 3 = -3

Dấu "=" xảy ra khi x + 1 = 0 hay x = -1

Do đó A đạt GTNN là -3 khi x = -1

b)

\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\le-0-\dfrac{1}{4}=-\dfrac{1}{4}\)

Dấu "=" xảy ra khi khi \(x-\dfrac{3}{7}=0\) hay \(x=\dfrac{3}{7}\)

Do đó B đạt GTLN là \(-\dfrac{1}{4}\) khi \(x=\dfrac{3}{7}\)

5 tháng 7 2018

\(\left(2^x+\dfrac{1}{3}\right)^4\) có mũ chẵn là 4 +> \(\left(2^x+\dfrac{1}{3}\right)^4\) > hoặc bằng 0 . Vậy GTNN của \(\left(2^x+\dfrac{1}{3}\right)^4\)= 0 .

vi GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)=> \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =0 -1=-1

vay GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =-1

b, vi \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) co mu chan la 2018 => \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) . hoặc bằng 0

Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 .Vì \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 =>

\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) +3=0+3=3

Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\)+3=3

22 tháng 10 2018
https://i.imgur.com/V0RPqo5.gif
12 tháng 10 2021

\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

12 tháng 10 2021

a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2

Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔  x = - 1,5

Vậy Bmin=  4,2 ⇔ x= -1,5

b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)

Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)

Vậy Cmax \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

1 tháng 9 2023

\(a,3-x=x+1,8\)

\(\Rightarrow-x-x=1,8-3\)

\(\Rightarrow-2x=-1,2\)

\(\Rightarrow x=0,6\)

\(b,2x-5=7x+35\)

\(\Rightarrow2x-7x=35+5\)

\(\Rightarrow-5x=40\)

\(\Rightarrow x=-8\)

\(c,2\left(x+10\right)=3\left(x-6\right)\)

\(\Rightarrow2x+20=3x-18\)

\(\Rightarrow2x-3x=-18-20\)

\(\Rightarrow-x=-38\)

\(\Rightarrow x=38\)

\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)

\(\Rightarrow8x-3+1=1+6x+x\)

\(\Rightarrow8x-3=7x\)

\(\Rightarrow8x-7x=3\)

\(\Rightarrow x=3\)

\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)

\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)

\(\Rightarrow-2x=\dfrac{10}{9}\)

\(\Rightarrow x=-\dfrac{5}{9}\)

1 tháng 9 2023

\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)

\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)

\(\Rightarrow x=\dfrac{16}{3}\)

\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)

\(\Rightarrow x-4=5-x\)

\(\Rightarrow x+x=5+4\)

\(\Rightarrow2x=9\)

\(\Rightarrow x=\dfrac{9}{2}\)

\(k,7x^2-11=6x^2-2\)

\(\Rightarrow7x^2-6x^2=-2+11\)

\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

\(m,5\left(x+3\cdot2^3\right)=10^2\)

\(\Rightarrow5\left(x+24\right)=100\)

\(\Rightarrow x+24=20\)

\(\Rightarrow x=-4\)

\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)

#\(Urushi\text{☕}\)

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

ĐKXĐ: \(x\notin\left\{-1;-\dfrac{1}{2}\right\}\)

a) Ta có: \(P=\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)

\(=\left(\dfrac{2x}{\left(x+1\right)\left(x^2+1\right)}+\dfrac{x^2+1}{\left(x^2+1\right)\left(x+1\right)}\right):\left(\dfrac{x+1+x}{x+1}\right)\)

\(=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x^2+1\right)}:\dfrac{2x+1}{x+1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x+1}{2x+1}\)

\(=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\)

b) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ

nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(P=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\), ta được:

\(P=\left[\left(\dfrac{1}{4}\right)^2+2\cdot\dfrac{1}{4}+1\right]:\left[\left(2\cdot\dfrac{1}{4}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)

\(=\left(\dfrac{1}{16}+\dfrac{1}{2}+1\right):\left[\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)

\(=\dfrac{25}{16}:\dfrac{51}{32}=\dfrac{25}{16}\cdot\dfrac{32}{51}=\dfrac{50}{51}\)

Vậy: Khi \(x=\dfrac{1}{4}\) thì \(P=\dfrac{50}{51}\)

20 tháng 1 2022

a, đk x khác 0

<=> x^2 = 16 <=> x = 4 ; x = -4 (tm)

b, <=> 36x +252 = -360 <=> x = -17 

c. đk x khác -1 

<=> (x+1)^2 = 16 

TH1 : x + 1 = 4 <=> x = 3 (tm)

TH2 : x + 1 = -4 <=> x = -5 (tm) 

d, đk x khác 1/2 

<=> (2x-1)^2 = 81 

TH1 : 2x - 1 = 9 <=> x = 5 (tm) 

TH2 : 2x - 1 = -9 <=> x = -4 (tm) 

 

a: \(\Leftrightarrow x^2=16\)

hay \(x\in\left\{4;-4\right\}\)

b: =>x+7/15=-2/3

=>x+7=-10

hay x=-17

c: \(\Leftrightarrow\left(x+1\right)^2=16\)

\(\Leftrightarrow x+1\in\left\{4;-4\right\}\)

hay \(x\in\left\{3;-5\right\}\)

a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3

=>x=-1/3+3/4=-4/12+9/12=5/12

b: =>x(1/2-5/6)=7/2

=>-1/3x=7/2

hay x=-21/2

c: (4-x)(3x+5)=0

=>4-x=0 hoặc 3x+5=0

=>x=4 hoặc x=-5/3

d: x/16=50/32

=>x/16=25/16

hay x=25

e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4

=>2x=-7/4+3=5/4

hay x=5/8