cho số tự nhiên a, chứng minh rằng \(a^7\equiv a\left(mod\right)42\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a2 + 8a + 7 = ( a2 + 2a + 1 ) + ( 6a + 6 )
= [ a2 + a + a + 1 ] + ( 6a + 6 )
= [ a( a + 1 ) + ( a + 1 ) ] + 6( a + 1 )
= ( a + 1 ) ( a + 1 ) + 6 ( a + 1 )
= ( a + 1 ) [ ( a + 1 ) + 6 ]
= ( a + 1 ) ( a + 7 )
Vì a + 1 chia hết cho a + 1 => ( a + 1 ) ( a + 7 ) chia hết cho a + 1
=> a2 + 8a + 7 chia hết cho a + 1 ( đpcm )
Theo bài ra ta có : [a2+8a+7] chia hết cho [a+1] =>[a2+8a+7]=[2a+8a+7]=[10a+7] chia hết cho 10[a+1] =>10[a+1] - [10a+7] chia hết cho a+1 =>10a+10-10a-7 chia hết cho a+1 =>3 chia hết cho a+1 =>a+1 thuộc Ư(3)={1;3} => Ta có : a+1 = 1 =>a+0 ; a+1=3 =>a=2 (nhớ xuống dòng bạn nhé) Vậy [a2+8a+7] chia hết cho [a+1]
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
Ta có : \(A=\left(a-1\right)a\left(a+1\right)\left(a+2\right)+1\)
\(=\left(a-1\right)\left(a+2\right)a\left(a+1\right)+1\)
\(=\left(a^2+a-2\right)\left(a^2+a\right)+1\)
\(=\left[\left(a^2+a\right)-2\right]\left(a^2+a\right)+1\)
\(=\left(a^2+a\right)^2-2\left(a^2+a\right)+1\)
\(A=\left(a^2+a-1\right)^2\)
Vậy A là số chính phương
Vì 7 là số nguyên tố
nên a^7-a chia hết cho 7
a^7-a=a(a^6-1)
=a(a^2-1)(a^4+a^2+1)
=a(a-1)(a+1)(a^4+a^2+1)
a;a-1;a+1 là 3 số liên tiếp
=>a(a-1)(a+1) chia hết cho 3!=6
=>a(a-1)(a+1)(a^4+a^2+1) chia hết cho 6
=>a^7-a chia hết cho 6
mà a^7-a chia hết cho 7
nên a^7-a chia hết cho BCNN(6;7)=42
=>\(a^7\equiv a\left(mod42\right)\)