Cho tam giác ABC. Vẽ phân giác ngoài tại A của tam giác ABC. Từ B kẻ d//AD.
a) C/m: d cắt AC tại E.
b) C/m: góc ABE = góc AEB.
c) Từ B kẻ b vuông góc với AD, từ A kẻ a//b. C/m: b vuông góc với d và a là pg góc BAC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
a: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có
MB=MC
\(\widehat{EBM}=\widehat{FCM}\)
Do đó: ΔMEB=ΔMFC
Suy ra:ME=MF và EB=FC
Ta có: AE+EB=AB
AF+FC=AC
mà AB=AC
và EB=FC
nên AE=AF
Ta có: AE=AF
nên A nằm trên đường trung trực của FE(1)
Ta có: ME=MF
nên M nằm trên đường trung trực của FE(2)
từ (1) và (2) suy ra AM là đường trung trực của FE
hay AM\(\perp\)FE
a: d//AD
AD cắt AC tại A
Do đó: d cắt AC tại E
b: Gọi Ax là tia đối của tia AB
=>góc xAC là góc ngoài tại đỉnh A của ΔABC
=>AD là phân giác của góc xAC
AD//BE
=>góc xAD=góc ABE và góc DAE=góc AEB
mà góc xAD=góc DAE
nên góc ABE=góc AEB
c: b vuông góc AD
d//AD
Do đó: b vuông góc d