K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(2x^2+3.\left(x^2-1\right)=5x^2+5x\)

\(2x^2+3x^2-3=5x^2+5x\)

\(5x^2-3=5x^2+5x\)

\(5x=-3\)

\(\Rightarrow x=-\frac{3}{5}\)

7 tháng 7 2017

Ta có :

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

=> \(2x^2+3\left(x^2-1\right)=5x^2+5x\)

=> \(2x^2+3x^2-3=5x^2+5x\)

=> \(5x^2-3=5x^2+5x\)

=> \(-3=5x\)

=> \(x=-\frac{3}{5}\)

1 tháng 11 2021

1.

a) \(2x^4-4x^3+2x^2\)

\(=2x^2\left(x^2-2x+1\right)\)

\(=2x^2\left(x-1\right)^2\)

b) \(2x^2-2xy+5x-5y\)

\(=\left(2x^2-2xy\right)+\left(5x-5y\right)\)

\(=2x\left(x-y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(2x+5\right)\)

1 tháng 11 2021

2 . 

a,

\(4x\left(x-3\right)-x+3=0\)

\(4x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right)\left(4x-1\right)=0\)

\(\left[{}\begin{matrix}x-3=0\\4x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\4x=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)

vậy \(x\in\left\{3;\dfrac{1}{4}\right\}\)

b, 

\(\)\(\left(2x-3\right)^2-\left(x+1\right)^2=0\)

\(\left(2x-3-x-1\right)\left(2x-3+x+1\right)\) = 0

\(\left(x-4\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}x-4=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)

vậy \(x\in\left\{4;\dfrac{2}{3}\right\}\)

20 tháng 12 2019

a) x = 2 7                         b) x = 2.

c) x = 2                          d) x = 1.

`1)`

`A(x)=x^3-2x^2+5x-2-x^3+x+7`

`A(x)=(x^3-x^3)-2x^2+(5x+x)+(-2+7)`

`A(x)=-2x^2+6x+5`

Bậc của đa thức: `2`

Hệ số cao nhất: `-2`

Hệ số tự do: `5`

`2)`

`H(x)-(2x^2 + 3x – 10) = A(x)`

`H(x)-(2x^2 + 3x – 10)=-2x^2+6x+5`

`H(x)= (-2x^2+6x+5)+(2x^2 + 3x – 10)`

`H(x)=-2x^2+6x+5+2x^2 + 3x – 10`

`H(x)=(-2x^2+2x^2)+(6x+3x)+(5-10)`

`H(x)=9x-5`

`3)`

Đặt `9x-5=0`

`9x=0+5`

`9x=5`

`-> x=5/9`

 

2 tháng 4 2023

loading...  

Bài 1:a) Tìm x, biết: 3.(x - 1) -  (x + 1) = - 1b) Tìm nghiệm của đa thức: f(x) = 2x2 - x Bài 2:Cho đa thức f(x) = 2x2 - 3x + x + 1   ;     g(x) = 3x - 3x3 + 2x2 - 2       ;                                            h(x) = 2x2 + 1a) Tính g(x) - f(x) + h(x)b)Tính f(- 1) - h(1/2)c) Với giá trị nào của x thì f(x) = h(x) Bài 3:Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC...
Đọc tiếp

Bài 1:

a) Tìm x, biết: 3.(x - 1) -  (x + 1) = - 1

b) Tìm nghiệm của đa thức: f(x) = 2x- x

 

Bài 2:

Cho đa thức f(x) = 2x2 - 3x + x + 1   ;     g(x) = 3x - 3x3 + 2x2 - 2       ;

                                            h(x) = 2x2 + 1

a) Tính g(x) - f(x) + h(x)

b)Tính f(- 1) - h(1/2)

c) Với giá trị nào của x thì f(x) = h(x)

 

Bài 3:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia Ax song song với BC. Trên Ax lấy điểm E sao cho AE = DC

a) Chứng minh tam giác ADC = tam giác DAE

b) Chứng minh tam giác ABD là tam giác cân

c) Gọi I là giao điểm của DE và AH ; K là giao điểm của DE và AB. Chứng minh 3 điểm B, I, M thẳng hàng ?

ĐANG CẦN GẤP ! MONG MỌI NGƯỜI GIÚP ĐỠ ! CẢM ƠN RẤT NHIỀU !

       

 

 

 

0
26 tháng 7 2018

a) Kết quả M = x 4 – 1.

b) Kết quả M =  x 2  – 2x – 3.

27 tháng 7 2021

nhanh giùm mình được không

 

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)

\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)

\(\left(x-1\right)\left(2x+11\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)

\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)

\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)

\(\left(5x+3\right).5\left(3x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)