Bài 3: Cho tam giác ABC, trung tuyến AM. Trên tia đối của tia MA lấy D sao cho MD = MA.
a) Cm: AB // CD và AB = CD
b) Gọi E, F lần lượt là trung điểm của AC, BD. AF cắt BC tại I, DE cắt BC tại K. Cm I là trọng tâm ABD, K là trọng tâm ACD.
c) Cm BI = IK = KC
d) Cm E, M, F thẳng hàng.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
Do đó:ABDC là hình bình hành
=>AB//CD và AB=CD
b: Xét ΔABD có
AF,BM là trung tuyến
AF cắt BM tại I
=>I là trọng tâm
=>BI=2/3BM=2/3*1/2BC=1/3BC
Xét ΔACD có
DE,CM là trung tuyến
DE cắt CM tại K
Do đó: K là trọng tâm
=>CK=2/3CM=2/3*1/2*BC=1/3BC
c: BI+IK+KC=BC
=>1/3BC+IK+1/3BC=BC
=>IK=1/3BC
=>BI=IK=KC
d: Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
=>AD cắt EF tại trung điểm của mỗi đường
=>E,M,F thẳng hàng