Chứng minh rằng :tích của 2 số chẵn liên tiếp thì chia hết cho 8
tích của3 số chẵn liên tiếp thì chia hết cho 48
tích của 4 số chẵn liên tiếp thì chia hết cho 38
\(B=10^n+18n-1chiahetcho27\)
GIÚP MK NHANH NHA NHỚ KẾT BN NỮA , MÌNH TIC CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
a) Gọi 2 số chẵn liên tiếp là: 2k; 2k+2
Theo đề bài, ta có: 2k(2k+2) chia hết cho 8
Để 2k(2k+2) chia hết cho 8 thì 2k(2k+2) phải chia hết cho 2 (vì 8 = 2.2.2)
Mà 2k(2k+2) chiia hết cho 2 vì có 1 thừa số 2 trong biểu thức
=> 2k(2k+2) chia hết cho 8
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
Gọi 3 số chẵn cần tìm là: \(2a-2;2a;2a+2\) ( a thuộc N*)
Ta có: \(\left(2a-2\right)2a\left(2a+2\right)=2.\left(a-1\right)2a.2\left(a+1\right)8\left(a-1\right)a\left(a+1\right)\)
Trong 3 số tự nhiên thì chắc chắn có 1 số chia hết cho 2 và 1 số chia hết cho 3.
=> Tích đó chia hết cho 8.2.3=64
a) 3 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right)\)
Ta có \(\Rightarrow n\left(n+1\right)\left(n+2\right)\) trong 3 số sẽ có 1 số chia hết cho 3
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\Rightarrow dpcm\)
b) 5 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right);\left(n+3\right);\left(n+4\right)\)
mà trong 5 số này có số chia hết cho 2;4;3;5 và 2.4=8
⇒ Tích 5 số này chia hết cho 3,5,8 \(\left[UCLN\left(3;5;8\right)=1\right]\)
⇒ Tích 5 số này chia hết cho tích của 3,5,8
mà \(3.5.8=120\)
\(\Rightarrow dpcm\)
c) 3 số chẵn liên tiếp là \(2n;2n+2;2n+4\)
Ta có \(2n\left(2n+2\right)\left(2n+4\right)\)
\(=2.2.2n\left(n+1\right)\left(n+2\right)\)
\(=8n\left(n+1\right)\left(n+2\right)⋮8\left(1\right)\)
Ta lại có \(\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)⋮3\\n\left(n+1\right)⋮2\end{matrix}\right.\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow8n\left(n+1\right)\left(n+2\right)⋮48\)
\(\Rightarrow dpcm\)
1/ Bài giải
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. ﴾1﴿
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24
2/ Bài giải
Vì trong 4 số tự nhiên chẵn có ít nhất 1 số chia hết cho 4
Và 2 số còn lại chia hết cho 2
=> Chia hết cho 2 x 2 x 4 = 16
Mà trong 3 số đó phải có 1 số chia hết cho 3
= > Tích chia hết cho : 3 . 16 = 48
=> Tích của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 48.
3/ Bài giải
‐ tập hợp con không chứa phần tử nào: tập rỗng => có 1 tập hợp
‐ tập hợp con có 1 phần tử là : {a}; {b}; {c} ; {d} => có 4 tập hợp
‐ tập hợp có 2 phần tử là: {a;b}; {a;c}; {a;d}; {b;c}; {b;d}; {c;d}; => có 6 tập hợp
‐ tập hợp có 3 phần tử là: {a;b;c}; {a;b;d} ; {a;c;d}; {b;c;d} => có 4 tập hợp
‐ tập hợp có 4 phần tử là chính A = {a;b;c;d} => có 1 tập hợp
Vậy có tất cả là 1 + 4 + 6 + 4 + 1 = 16 tập hợp
3/Các tập hợp con của A là :
{a},{b},{c}
{a;b},{a;c},{b;c}
{a;b;c}
k mình nha
gọi 3 số là:a ; a+2 ; a+4
ta có :
a.(a+2).(a+4)
vì a là số chẵn =>\(a⋮2\)=>\(\text{a.(a+2).(a+4) }⋮2\)
vì a ; a+2 ; a+4 là các số chẵn liên tiếp => có 1 số chia hết cho 4 => \(\text{a.(a+2).(a+4) }⋮4\)
vì \(\text{a.(a+2).(a+4) }⋮2;4\Rightarrow\text{a.(a+2).(a+4) }⋮2x4\Rightarrow\text{a.(a+2).(a+4) }⋮8\)
Gọi 3 số chẵn liên tiếp là 2a;2a+2;2a+4
ta có:2a.(2a+2).(2a+4)=(2a.2a.2a).(2+4)=8a.6 chia hết cho 8
vậy tích 3 số chẵn liên tiếp sẽ chia hết cho 8
a, TÍch hai số chẵn lt chia hết cho 8
Gọi hai số chẵn đó là 2a và 2a + 2 thì tích của chúng là:
2a[2a + 2] = 4a2 + 4a = 4[a2 + a] = 4[a[a+1]]
Mà a[a+1] là tích hai số nguyên liên tiếp nên chia hết cho hai và có dạng 2h
Vậy 2a[2a + 2] = 4.2h = 8h \(⋮8\)
Kết luận: ..................
b. Tích ba số chẵn lt chia hết cho 48
Gọi ba số chẵn lt là 2a, 2a+2 và 2a + 4 thì tích chúng là:
2a[2a + 2][2a + 4] = 8a[a+1][a+2]
Mà a[a + 1][a + 2] là tích ba số nguyên liên tiếp nên chia hết cho 3; lại có ít nhất 1 số chẵn nên chia hết cho 2. Mà ƯCLN của 3 và 2 là 1 nên a[a + 1][a + 2] chia hết cho 2.3 = 6 nên có dạng 6k
=> 2a[2a + 2][2a + 4] = 8.6k = 48k chia hết cho 48
Kết luận:....................
c. Tích 4 số chẵn liên tiếp chia hết cho 384
384=27.3
Gọi 4 số chẵn lt là : 2a, 2a +2, 2a+4 và 2a+6
Tích chúng là:
2a[2a+2][2a+4][2a+6] = 16a[a+1][a+2][a+3]
= 24.a[a+1][a+2][a+3]
Vậy bây giờ ta cần chứng minh a[a+1][a+2][a+3] chia hết cho 23.3
Như chứng minh trên, a[a+1][a+2] luôn chia hết cho 3 nên a[a+1][a+2][a+3] cũng chia hết cho 3
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 => tích 4 số tự nhiên liên tiếp chia hết cho 8.
Mà ƯCLN của 3 và 8 = 1 nên a[a+1][a+2][a+3] chia hết cho 24 hay 23.3
Vậy 2a[2a+2][2a+4][2a+6] chia hết cho 384.
Kết luận:........................
d, D = 10n + 18n - 1 chia hết cho 27
D = 10n + 18n - 1
= 10n - 1 + 18n
= 999...99 + 18n [n chữ số 9]
= 9.11....111 + 9.2n [n chữ số 1]
= 9 [11111...11 + 2n]
Vậy ta cần cm [11111...11 + 2n] chia hết cho 3
Nếu n chia hết cho 3 thì 11111...11 + 2n chia hết cho 3
Nếu n chia 3 dư 1 thì 1111...11 chia 3 dư 1; 2n chia 3 dư 2 => 11111...11 + 2n chia hết cho 3
Nếu n chia 3 dư 1 thì 1111...11 chia 3 dư 2; 2n chia 3 dư 1 => 11111...11 + 2n chia hết cho 3
Vậy 11111...11 + 2n chia hết cho 3 và có dạng 3k
=> 9 [11111...11 + 2n] = 9.3k = 27k chia hết cho 27
=> D = 10n + 18n - 1 chia hết cho 27 => ĐPCM