Cho tam giác ABC và tam giác ADC co chung AC, hai đỉnh B và D nằm trong 2 nửa mặt phẳng đối nhau có bờ AC, cạnh AB song song với DC, BC song song AD. Gọi M,N,P theo thứ tự là trung điêm AD, DC,CB. Gọi E,F là giao điểm của BD với AP, BD với CM.
a, CM 3 điểm A,F,N thẳng hàng.
b, CM BE=EF=FD.
c, Trên Bc lấy K sao cho EK song song DC. CM Bk=1/3BC
Giúp câu c với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).
\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (A là trung điểm của MN).
+ AB = AC (gt).
+ \(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).
\(\Rightarrow\) Tứ giác MNCB là hình thang.
Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).
\(\Rightarrow\) Tứ giác MNCB là hình thang cân.
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: BD=CD
b: Ta có: ΔABC cân tại A
mà AD là tia phân giác
nên AD là đường cao
Ta có BE=EF=FD => \(\frac{BE}{BD}=\frac{1}{3}\)
Ta có EK//CD. Áp dụng định lý talet trong tam giác có \(\frac{BE}{BD}=\frac{BK}{BC}=\frac{1}{3}\Rightarrow BK=\frac{1}{3}BC\)
Câu a với câu b làm kiểu g z???
Giúp vs mình đang cần gấp huhu TTTTTTTT