Rút gọn:
\(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: x khác 0
A = \(\sqrt{\dfrac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
= \(\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
= \(\sqrt{\dfrac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
= \(\dfrac{x^2+3}{\left|x\right|}+\left|x-2\right|\)
TH1: x \(\ge2\)
A = \(\dfrac{x^2+3}{x}+x-2\)
= \(\dfrac{x^2+3+x^2-2x}{x}=\dfrac{2x^2-2x+3}{x}\)
TH2: \(0< x< 2\)
A = \(\dfrac{x^2+3}{x}-x+2\)
= \(\dfrac{x^2+3-x^2+2x}{x}=\dfrac{2x+3}{x}\)
TH3: x < 0
A = \(\dfrac{x^2+3}{-x}-x+2\)
= \(\dfrac{-x^2-3}{x}-x+2=\dfrac{-x^2-3-x^2+2x}{x}=\dfrac{-2x^2+2x-3}{x}\)
ĐKXĐ: \(x\ne0\)
\(y=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(y=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
\(y=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(y=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)
Ta có bảng xét dấu:
Với \(x< 0,y=\frac{x^2+3}{-x}+2-x=\frac{2x^2-2x+3}{-x}\)
Với \(0< x\le2,y=\frac{x^2+3}{x}+2-x=\frac{2x+3}{x}\)
Với \(x>2,y=\frac{x^2+3}{x}+x-2=\frac{2x^2-2x+3}{x}\)
- Ta thấy ngay, với cả ba trường hợp thì \(y\in Z\Leftrightarrow x\in U\left(3\right)=\left\{-3;-1;1;3\right\}\)
Bài 1:
\(\sqrt{24+8\sqrt{15}-\sqrt{9-4\sqrt{5}}}\)
\(=\sqrt{24+8\sqrt{15}-\left(\sqrt{5}-2\right)}\)
\(=\sqrt{26+8\sqrt{15}-\sqrt{5}}\)
Bài 2:
\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
\(A=\sqrt{\frac{x^4+6x^2+9}{x^2}}\)
\(A=\frac{\sqrt{x^4+6x^2+9}}{\sqrt{x^2}}\)
\(A=\frac{\sqrt{\left(x^2+3\right)^2}}{x}\)
\(A=\frac{x^2+3}{x}\)
\(A=\frac{x^2+3}{x}+x-2\)
\(A=\frac{2x^2+3}{x}-2\)
wrecking ball sai rồi \(\frac{\sqrt{\left(x^2+3\right)^2}}{x}=\frac{trituyetdoix^2+3}{x}\) bằng
Điều kiện: x khác 0
\(=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|\)
\(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
=\(\frac{\sqrt{x^4-6x+9+12x^2}}{\sqrt{x^2}}+\sqrt{x^2+4x+4-8x}\)
=\(\frac{\sqrt{x^4+6x+9}}{x}+\sqrt{x^2-4x+4}\)
=\(\frac{\sqrt{\left(x^2+3\right)^2}}{x}+\sqrt{\left(x-2\right)^2}\)
=\(\frac{\sqrt{\left(x^2+3\right)^2}}{x}+\left|x-2\right|\)
=\(\frac{x^2+3}{x}+\left|x-2\right|\)
TH1: x\(\ge\)2 =>|x-2|=x-2
=>\(\frac{x^2+3}{x}+\left|x-2\right|\)
=\(\frac{x^2+3}{x}+x-2\)
=\(\frac{x^2+3}{x}+\frac{x^2-2x}{x}=\frac{2x^2-2x+3}{x}\)
TH2:x\(\le\)2 =>|x-2|=2-x
=>\(\frac{x^2+3}{x}+\left|x-2\right|\)
=\(\frac{x^2+3}{x}+2-x\)
=\(\frac{x^2+3}{x}+\frac{2x-x^2}{x}=\frac{2x+3}{x}\)