Chứng minh rằng 100! > 2^300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{300}>\frac{1}{300}.200=\frac{200}{300}=\frac{2}{3}\)
\(\Rightarrow\) biểu thức trên bé hơn \(\frac{2}{3}\)
nó tất nhiên là lớn hơn
nên chúng ta ko cần phải chứng minh
thấy 1/2>1/100
1/3>1/100
/......
1/100=1/100
<=> 1/2+1/3+..+1/100>99/100
hok tốt
ta thấy 1/2 > 1/100
1/3 > 1/100
... 1/99 > 1/100
=>1/2 + 1/3 + 1/4 +...+1/100 > 99*(1/100)=99/100
Vậy 1/2 + 1/3 + 1/4 +...+1/100>99/100
Nguyễn Quang Huy viết chữ don't viết thành don mà ai cho li-ke thế
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}+\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{9}}\right)+...+\left(\frac{1}{\sqrt{82}}+...+\frac{1}{\sqrt{100}}\right)\)
\(>\frac{1}{\sqrt{1}}+\left(\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{9}}\right)+...+\left(\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\right)\)
\(>\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{10}{10}=10\)
Lời giải:
Xét tỉ số:
\(\frac{100!}{2^{300}}=\frac{100!}{8^{100}}=\frac{1}{8}.\frac{2}{8}.\frac{3}{8}.....\frac{99}{8}.\frac{100}{8}\)
\(=(\frac{1}{8}.\frac{64}{8})(\frac{2}{8}.\frac{32}{8})(\frac{3}{8}.\frac{22}{8})(\frac{4}{8}.\frac{16}{8})(\frac{5}{8}.\frac{13}{8})(\frac{6}{8}.\frac{11}{8})(\frac{7}{8}.\frac{10}{8}).\frac{8}{8}.\frac{9}{8}.\frac{12}{8}.\frac{14}{8}.\frac{15}{8}.\frac{17}{8}....\frac{31}{8}.\frac{33}{8}...\frac{65}{8}...\frac{100}{8}\)
\(>1.1....1=1\)
$\Rightarrow 100!> 2^{300}$