K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

\(A=\left(2x-3\right)^2-\left(4x-6\right)\left(2x-5\right)+\left(2x-5\right)^2\)

\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(2x-5\right)+\left(2x-5\right)^2\)

\(=\left(2x-3-2x+5\right)^2\)

\(=4\)

Vì giá trị bt trên ko phụ thuộc vào biến nên giá trị của bt luôn là 4

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

$x=\frac{\sqrt{5}-1}{2}$

$2x=\sqrt{5}-1$

$2x+1=\sqrt{5}\Rightarrow (2x+1)^2=5$

$\Leftrightarrow 4x^2+4x-4=0$

$\Leftrightarrow x^2+x-1=0$

Khi đó:
\((4x^5+4x^4-5x^3+2x-2)^2\)

\(=[4x^3(x^2+x-1)-x^3+2x-2]^2\)

\(=(-x^3+2x-2)^2=[-x(x^2+x+1)+(x^2+x-1)-1]^2\)

\(=(-1)^2=1\)

8 tháng 7 2018

\(4x^2+8x+5=\)  \(\left(2x\right)^2+2.x.2.2+4+1\)

                             \(=\left(2x+2\right)^2+1\)

với \(x=49\)=> \(\left(49+2\right)^2+1=2602\)

\(x^3+3x^2+3x+1\) \(=\left(x+1\right)^3\)

với \(x=99\)=> \(\left(99+1\right)^3=1000000\)

mấy cau kia làm tương tự nha

8 tháng 7 2018

Mk chỉ phân tích ra thôi,cn đâu bn tự thay số vào nha! 

\(a,A=4x^2+8x+5\)

\(=4x^2+8x+4+1\)

\(=\left(2x+2\right)^2+1\)

\(b,B=x^3+3x^2+3x+1\)

\(=\left(x+1\right)^3\)

\(c,C=x^3-9x^2+27x-26\)

\(=\left(x^3-9x^2+27x-27\right)+1\)

\(=\left(x-3\right)^3+1\)

\(d,D=\left(2x-3\right)^2-\left(4x-6\right)\left(2x-5\right)+\left(2x-5\right)^2\)

\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(2x-5\right)+\left(2x-5\right)^2\)

\(=\left(2x-3-2x+5\right)^2\)

\(=4\)

Vì giá trị của bt ko phụ thuộc vào biến nên bt luôn có giá trị là 4

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349

16 tháng 7 2018

\(D=\left(2x-3\right)^2-\left(4x-6\right)\left(2x-5\right)+\left(2x-5\right)^2=\left(2x-3\right)^2-2\left(2x-3\right)\left(2x-5\right)+\left(2x-5\right)^2=\left(2x-3-2x+5\right)^2=2^2=4\)

x = 99 để làm gì nhỉ??...hum

18 tháng 2 2021

3. Tìm giá trị nhỏ nhất của các biểu thứca. A = 4x2  4x 11b. B = (x - 1) (x 2) (x 3) (x 6)c. C = x2 - 2x y2 - 4y 7Ai nha... - Hoc24

a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)

b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)

20 tháng 12 2023

\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)

Thay x+y=0 vào A

\(\Rightarrow\)A=0