Tính nhanh
a,(2x-3)2
b,(x-3y)2
c, (2x+3y) (2x-3y)-(2x+y)2
d,(x+3y2)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x+2\right)^2=x^2+2\cdot x\cdot2+2^2=x^2+4x+4\)
b: \(\left(2x+y\right)^2=\left(2x\right)^2+2\cdot2x\cdot y+y^2=4x^2+4xy+y^2\)
c: \(\left(x-3y\right)^2=x^2-2\cdot x\cdot3y+\left(3y\right)^2=x^2-6xy+9y^2\)
d: \(\left(\dfrac{1}{2}x-y\right)^2=\left(\dfrac{1}{2}x\right)^2-2\cdot\dfrac{1}{2}x\cdot y+y^2\)
\(=\dfrac{1}{4}x^2-xy+y^2\)
e: \(\left(x^2-y\right)^2=\left(x^2\right)^2-2\cdot x^2y+y^2=x^4-2x^2y+y^2\)
a) \(\left(x+2\right)^2\)
\(=x^2+2\cdot x\cdot2+2^2\)
\(=x^2+4x+4\)
b) \(\left(2x+y\right)^2\)
\(=\left(2x\right)^2+2\cdot2x\cdot y+y^2\)
\(=4x^2+4xy+y^2\)
c) \(\left(x-3y\right)^2\)
\(=x^2-2\cdot x\cdot3y+\left(3y\right)^2\)
\(=x^2-6xy+9y^2\)
d) \(\left(\dfrac{1}{2}x-y\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2-2\cdot\dfrac{1}{2}x\cdot y+y^2\)
\(=\dfrac{x^2}{4}-xy+y^2\)
e) \(\left(x^2-y\right)^2\)
\(=\left(x^2\right)^2-2\cdot x^2\cdot y+y^2\)
\(=x^4-2x^2y+y^2\)
a: \(\left(2x-3\right)^2=4x^2-12x+9\)
b: \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c: \(=4x^2-9y^2-4x^2-4xy-y^2\)
\(=-10y^2-4xy\)
d: \(\left(x+3y^2\right)^2=x^2+6xy^2+9y^4\)
a: \(\left(2x-3\right)^2=4x^2-12x+9\)
b: \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c: \(\left(2x+3y\right)\left(2x-3y\right)-\left(2x+y\right)^2\)
\(=4x^2-9y^2-4x^2-4xy-y^2=-8y^2-4xy\)
d: \(\left(x+3y^2\right)^2=x^2+6xy^2+9y^4\)
Chỉ cần dựa vào 7 hằng đẳng thức thôi nha bạn:
\(\left(2x-3\right)^2=2x^2-12x+9\)
\(\left(x-3y\right)^2=x^2-3y.2x+3y^2\)
\(\left(2x+3y\right)\left(2x-3y\right)-\left(2x+y\right)^2=2x^2-3y^2-2x^2+4xy-y^2=-3y^2+4xy-y^2\)\(\left(x+3y^2\right)^2=x^2+3y^22x+3y^4\)
Bạn dùng hằng đẳng thức ý
a. (A – B)2= A2 – 2AB+ B2
b. (A – B)2= A2 – 2AB+ B2
c. (2x+3y)(2x-3y)-(2x+y)2
= 4x2-9y2 -4x2 - 4xy-y2
= -10y2-4x2
d. (A+B)2 = A2+2AB+B2
\(A=4x^2+12x+9\\ B=121x^2-44x+4\\ C=16x^2-9y^2\\ D=4x^2+20x+25\\ E=x^2-12x+36\)
a) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(=\left(5x-5y\right)\left(x+y\right)\)
\(=5\left(x-y\right)\left(x+y\right)\)
d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=\left[3\left(x-y\right)+2\left(x+y\right)\right]\left[3\left(x-y\right)-2\left(x+y\right)\right]\)
\(=\left(3x-3y+2x+2y\right)\left(3x-3y-2x-2y\right)\)
\(=\left(5x-y\right)\left(x-5y\right)\)
e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)
\(=\left(2x-1\right)^2-\left(x+1\right)\)
\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)
\(=3x\left(x-2\right)\)
f) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
g) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(0,1\right)^3\)
\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)
h) \(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)