x4-x2+10x-25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{\left(x^2+5\right)\left(x^2-5\right)+2x\left(x^2+5\right)}{x^2+5}=3\)
=>x^2+2x-5=3
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=-4 hoặc x=2
a: \(x^2-y^2-x-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
f: \(x^3-5x^2-5x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+1\right)\)
a. 5x + 3(x2 - x - 1)
= 5x + 3x2 - 3x - 3
= 3x2 + 5x - 3x - 3
= 3x2 + 2x - 3
b. (5 - x)(5 + x) - (2x - 1)2
25 - x2 - (4x2 - 4x + 1)
= 25 - x2 - 4x2 + 4x - 1
= 25 - 1 - x2 - 4x2 + 4x
= 24 - 5x2 + 4x
a: \(=\dfrac{\left(x^2+5\right)\left(x^2-5\right)+2x\left(x^2+5\right)}{x^2+5}=x^2+2x-5\)
b: \(=\dfrac{x^3-2x^2-x^2+2x+3x-6}{x-2}=x^2-x+3\)
\(g,x^4-16=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\\ i,-x^2+10x-25=-\left(x-5\right)^2\\ k,x^3+3x^2+3x+1-27z^3\\ =\left(x+1\right)^3-27z^3\\ =\left(x+1-3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\\ =\left(x-3z+1\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\\ m,\left(x+y\right)^2-25\left(x+y\right)+24=\left(x+y-5\right)^2-1=\left(x+y-4\right)\left(x+y-6\right)\)
g. x4 - 16
<=> x4 - 42
<=> (x2)2 - 42
<=> (x2 - 4)(x2 + 4)
i. -x2 + 10x - 25
<=> -(x2 - 10x + 25)
<=> -(x2 -10x + 52)
<=> -(x - 5)2
a) \(N=x^2-10x+25\)
\(N=x^2-2\cdot5\cdot x+5^2\)
\(N=\left(x-5\right)^2\)
Thay x = 55 vào N ta có:
\(N=\left(55-5\right)^2=2500\)
b) \(P=\dfrac{x^4}{4}-x^2y+y^2\)
\(P=\left(\dfrac{x^2}{2}\right)^2-2\cdot\dfrac{x^2}{2}\cdot y+y^2\)
\(P=\left(\dfrac{x^2}{2}-y\right)^2\)
Thay x = 4 và \(y=\dfrac{1}{2}\) vào P ta có:
\(P=\left(\dfrac{4^2}{2}-\dfrac{1}{2}\right)^2=\dfrac{225}{4}\)
Phần b mình thấy kết quả nó sai b ạ thầy cho mình đáp án là 225/9
a)\(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\Rightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2=x^2+6x+64\)
\(\Rightarrow\left(2x+3-2x+5\right)^2=x^2+6x+64\)
\(\Rightarrow8^2=x^2+6x+64\)
\(\Rightarrow64=x^2+6x+64\)
\(\Rightarrow x^2+6x=0\)
\(\Rightarrow x\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
b) \(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)=3\)
\(\Rightarrow\left(x^4+5x^2-5x^2-25+2x^3+10x\right):\left(x^2+5\right)=3\)
\(\Rightarrow\left[x^2\left(x^2+5\right)-5\left(x^2+5\right)+2x\left(x^2+5\right)\right]:\left(x^2+5\right)=3\)
\(\Rightarrow\left(x^2+5\right)\left(x^2-5+2x\right):\left(x^2+5\right)=3\)
\(\Rightarrow x^2+2x-5=3\)
\(\Rightarrow x^2+2x-5-3=0\)
\(\Rightarrow x^2+2x-8=0\)
\(\Rightarrow x^2+4x-2x-8=0\)
\(\Rightarrow x\left(x+4\right)-2\left(x+4\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Bạn ơi ! mik hỏi phép này làm thế nào hả bạn ?
( x4 + 5x2 - 5x2 -25 + 2x3 + 10x ) :( x2 + 5 )
\(x^4-x^2+10x-25\)
\(=x^4-\left(x^2-10x+25\right)\)
\(=\left(x^2\right)^2-\left(x^2-2\cdot5\cdot x+5^2\right)\)
\(=\left(x^2\right)^2-\left(x-5\right)^2\)
\(=\left[x^2-\left(x-5\right)\right]\left[x^2+\left(x-5\right)\right]\)
\(=\left(x^2-x+5\right)\left(x^2+x-5\right)\)