tìm x,y
A) \(x^3+y^3=6xy-8\)
B)\(x^3-y^3=xy+8\)
C)\(x^2+xy+y^2=x^2y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)
a) 3x³ + 6x²y
= 3x².(x + 2y)
b) 2x³ - 6x²
= 2x².(x - 2)
c) 18x² - 20xy
= 2x.(9x - 10y)
d) xy + y² - x - y
= (xy + y²) - (x + y)
= y(x + y) - (x + y)
= (x + y)(y - 1)
e) (x²y² - 8)² - 1
= (x²y² - 8 - 1)(x²y² - 8 + 1)
= (x²y² - 9)(x²y² - 7)
= (xy - 3)(xy + 3)(x²y² - 7)
f) x² - 7x - 8
= x² - 8x + x - 8
= (x² - 8x) + (x - 8)
= x(x - 8) + (x - 8)
= (x - 8)(x + 1)
a: \(3x^3+6x^2y\)
\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)
b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)
c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)
d: \(xy+y^2-x-y\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
e: \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)
\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)
f: \(x^2-7x-8\)
\(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)
g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
h: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)
\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)
k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)
\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)
l: \(-2x^2+8xy-8y^2\)
\(=-2\left(x^2-4xy+4y^2\right)\)
\(=-2\left(x-2y\right)^2\)
m: \(3x^2+5x-3y^2-5y\)
\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y+5\right)\)
Bài 1:
\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
Voqis x=-1;y=3 ta có:
\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)
b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)
Với x=-1;y=3 ta có:
\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)
c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)
Với x=-1;y=3 ta có:
\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)
d) phân tích tt
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)
a) Ta có: \(A=a\left(b+3\right)-b\left(3+b\right)\)
\(=a\left(b+3\right)-b\left(b+3\right)\)
\(=\left(b+3\right)\left(a-b\right)\)
Thay a=2003 và b=1997 vào biểu thức A=(b+3)(a-b), ta được:
\(A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\)
Vậy: 12000 là giá trị của biểu thức \(A=a\left(b+3\right)-b\left(3+b\right)\) tại a=2003 và b=1997
b) Ta có: \(B=b^2-8b-c\left(8-b\right)\)
\(=b\left(b-8\right)+c\left(b-8\right)\)
\(=\left(b-8\right)\left(b+c\right)\)
Thay b=108 và c=-8 vào biểu thức B=(b-8)(b+c), ta được:
\(B=\left(108-8\right)\cdot\left(108-8\right)\)
\(=100\cdot100=10000\)
Vậy: 10000 là giá trị của biểu thức \(B=b^2-8b-c\left(8-b\right)\) tại b=108 và c=-8
c) Ta có: \(C=xy\left(x+y\right)-2x-2y\)
\(=xy\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(xy-2\right)\)
Thay xy=8 và x+y=7 vào biểu thức \(C=\left(x+y\right)\left(xy-2\right)\), ta được:
\(C=7\cdot\left(8-2\right)=7\cdot6=42\)
Vậy: 42 là giá trị của biểu thức \(C=xy\left(x+y\right)-2x-2y\) tại xy=8 và x+y=7
d) Ta có: \(D=x^5\left(x+2y\right)-x^3y\left(x+2y\right)+x^2y^2\left(x+2y\right)\)
\(=x^2\left(x+2y\right)\left(x^3-xy+y^2\right)\)
Thay x=10 và y=-5 vào biểu thức \(D=x^2\left(x+2y\right)\left(x^3-xy+y^2\right)\), ta được:
\(D=10^2\left[10+2\cdot\left(-5\right)\right]\left[10^3-10\cdot\left(-5\right)+\left(-5\right)^2\right]\)
\(=10^2\cdot\left(10-10\right)\cdot\left(100+50+25\right)\)
=0
Vậy: 0 là giá trị của biểu thức \(D=x^5\left(x+2y\right)-x^3y\left(x+2y\right)+x^2y^2\left(x+2y\right)\) tại x=10 và y=-5
a) \(A=a\left(b+3\right)-b\left(3+b\right)\)
\(=\left(b+3\right)\left(a-b\right)\)
Thay a = 2003 và b = 1997 vào A ta có:
\(A=\left(1997+3\right)\left(2003-1997\right)\)
\(=2000.6=12000\)
b) \(B=b^2-8b-c\left(8-b\right)\)
\(=b\left(b-8\right)+c\left(-8+b\right)\)
\(=b\left(b-8\right)+c\left(b-8\right)\)
\(=\left(b-8\right)\left(b+c\right)\)
Thay b = 108 và c = -8 vào B ta có:
\(\left(108-8\right)\left(108-8\right)\)
\(=100.100=10000\)
c) \(C=xy\left(x+y\right)-2x-2y\)
\(=xy\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(xy-2\right)\)
Thay xy = 8 và x + y = 7 vào C ta có:
\(7.\left(8-2\right)=7.6=42\)
d/Bạn dùng công thức trực quan để ghi công thức nhé!
Để giải phương trình này, chúng ta có thể sử dụng công thức khai triển đa thức. Với phương trình A) x^3 + y^3 = 6xy - 8, ta có thể thay thế x^3 và y^3 bằng (x + y)(x^2 - xy + y^2) và tiếp tục giải từ đó. Tương tự, chúng ta có thể áp dụng công thức khai triển đa thức cho các phương trình B) và C) để tìm giá trị của x và y.