K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

a/

Nếu \(a\ge1\) => vế trái có tận cùng là 8 mà vế phải là 1 số chính phương.

Một số chính phương chỉ có tận cùng là 0;1;4;6;9

=> a=0

\(\Rightarrow5^0+323=b^2\Leftrightarrow18^2=b^2\Rightarrow b=18\)

b/

Nếu \(a\ge1\) => vế trái là 1 số chẵn mà VP= \(7^b\) chỉ có tận cùng là 1;3;7;9 là 1 số lẻ

\(\Rightarrow a=0\)

\(\Leftrightarrow2^0+342=7^b\Leftrightarrow7^3=7^b\Rightarrow b=3\)

c/

Nếu \(a\ge1\) => vế trái là 1 số chẵn mà VP= \(3^b\)  là 1 số lẻ => a=0

\(\Leftrightarrow2^0+80=3^b\Leftrightarrow3^4=3^b\Rightarrow b=4\)

d/

Nếu \(a\ge1\) => vế trái là 1 số lẻ mà VP là 1 số chẵn => a=0

\(\Leftrightarrow35^0+9=2.5^b\Rightarrow10=2.5^b\Leftrightarrow5^b=5\Rightarrow b=1\)

 

 

14 tháng 10 2018

a)do 183 chia hết cho 3 nhưng ko chia hết cho 9

mà 9b chia hết cho 9

=>3a=3=>a=1

9b=180=>b=20

a=1,b=20

4 tháng 9 2023

b) Ta có:

\(7^b=2^a+342\) 

\(\Rightarrow\left\{{}\begin{matrix}7^b=343\\2^a=7^b-342\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}7^b=7^3\\2^a=343-342\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=3\\2^a=2^0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=3\\a=0\end{matrix}\right.\) 

c) Ta có:

\(2^a+80=3^b\)

\(\Rightarrow\left\{{}\begin{matrix}3^b=81\\2^a=3^b-80\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3^b=3^4\\2^a=81-80\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=4\\2^a=2^0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=4\\a=0\end{matrix}\right.\)

d) Ta có:

\(5^a+9999=20b\)

\(\Rightarrow\left\{{}\begin{matrix}5^a=1\\20b=9999+5^a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5^a=5^0\\20b=9999+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=0\\b=\dfrac{10000}{20}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=0\\b=500\end{matrix}\right.\)

e) \(10^a+168=b^2\)

\(\Rightarrow\left\{{}\begin{matrix}10^a=1\\b^2=168+10^a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}10^a=10^0\\b^2=168+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=0\\b^2=169\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=0\\\left[{}\begin{matrix}b=13\\b=-13\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left(a;b\right)=\left(0;13\right);\left(0;-13\right)\) 

f) \(5^a+323=b^2\)

\(\Rightarrow\left\{{}\begin{matrix}5^a=1\\b^2=5^a+323\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5^a=5^0\\b^2=324\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=0\\b^2=18^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=0\\\left[{}\begin{matrix}b=18\\b=-18\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left(a;b\right)=\left(0;18\right);\left(0;-18\right)\)

4 tháng 9 2023

b) a = 0

    b = 3

c) a = 0

    b = 4

d) a = 0 

    b = 500

e) a = 0

    b ∈ {13; -13}

f) a = 0

   b ∈ {18; -18}

18 tháng 1 2019

a) +) Vì 183 \(⋮̸\) 9 và 9b \(⋮\) 9 nên 3a \(⋮̸\) 9

\(\Rightarrow\) a < 2

\(\Rightarrow\) a \(\in\) {0; 1} (1)

+) Vì 183 \(⋮\) 3 và 9b \(⋮\) 3 nên 3a \(⋮\) 3 (2)

Từ (1) và (2) suy ra a = 1 \(\Rightarrow\) b = 20

Vậy...

27 tháng 1 2019

Có 3a\(\le\)183(a là STN)nên 0\(\le\)a\(\le\)4

Nếu a=0 thì b loại

a=1 thì b=20

a=2 thì b loại

a= 3 thì b loại

a=4 thì b loại

Vậy a=1;b=20

Đề thi kiểm tra thực lực 45'Trắc NghiệmBài 1: Thực hiện các phép tính rồi phân tích các kết quả ra thừa số nguyên tố.a, 160 – ( 23 . 52 – 6 . 25 ) b, 4 . 52 – 32 : 24c, 5871 : [ 928 – ( 247 – 82 . 5 ) d, 777 : 7 +1331 : 113Bài 2: Thực hiện phép tính rồi phân tích kết quả ra thừa số nguyên tố:a, 62 : 4 . 3 + 2 .52 b, 5 . 42 – 18 : 32Bài 3: Thực hiện phép tính:a, 80 - (4 . 52 – 3 .23) b, 23 . 75 + 25. 23 + 180c, 24 ....
Đọc tiếp

Đề thi kiểm tra thực lực 45'

Trắc Nghiệm

Bài 1: Thực hiện các phép tính rồi phân tích các kết quả ra thừa số nguyên tố.

a, 160 – ( 23 . 52 – 6 . 25 ) b, 4 . 52 – 32 : 24

c, 5871 : [ 928 – ( 247 – 82 . 5 ) d, 777 : 7 +1331 : 113

Bài 2: Thực hiện phép tính rồi phân tích kết quả ra thừa số nguyên tố:

a, 62 : 4 . 3 + 2 .52 b, 5 . 42 – 18 : 32

Bài 3: Thực hiện phép tính:

a, 80 - (4 . 52 – 3 .23) b, 23 . 75 + 25. 23 + 180

c, 24 . 5 - [131 – ( 13 – 4 )2] d, 100 : { 250 : [ 450 – ( 4 . 53- 22. 25)]}

Tự luận

Bài 4: Tìm số tự nhiên x, biết:

a, 128 – 3( x + 4 ) = 23 b, [( 4x + 28 ).3 + 55] : 5 = 35

c, (12x – 43).83 = 4.84 d, 720 : [ 41 – ( 2x – 5 )] = 23.5

Bài 5: Tìm số tự nhiên x, biết:

a, 123 – 5.( x + 4 ) = 38 b, (3x – 24) .73 = 2.74

Bài 6: Tìm số tự nhiên x, biết rằng nếu nhân nó với 5 rồi cộng thêm 16, sau đó chia cho 3 thì được 7.

Bài 7: Tìm số tự nhiên x, biết rằng nếu chia nó với 3 rồi trừ đi 4, sau đó nhân với 5 thì được 15.

Bài 8: Tìm số tự nhiên x, biết rằng:

a, 70 chia hết cho x , 84 chia hết cho x và x > 8.

b, x chia hết cho 12, x chia hết cho 25, x chia hết cho 30 và 0 < x < 500

Bài 9: Tìm số tự nhiên x sao cho:

a, 6 chia hết cho (x – 1) b, 14 chia hết cho (2x +3).

Chúc các bạn thành công ^_^ haha

4
13 tháng 1 2017

kiểm tra thực lực thì bạn phải làm chứ bạn! Kiểm tra năng lực học của bạn như thế nào nữa!

14 tháng 11 2016

các bạn làm rồi cho mik xem thử nhá tại mik cũng đang ôn mí dạng này

Bài 1:

a) \(3\left(x+5\right)=x-7\)

\(\Leftrightarrow3x+15=x-7\)

\(\Leftrightarrow3x+15-x=-7\)

\(\Leftrightarrow2x+15=-7\)

\(\Leftrightarrow2x=-22\)

\(\Leftrightarrow x=-11\)

Vậy \(x=-11\)

Bài 2:

\(\left|x+2\right|-14=-9\)

\(\Leftrightarrow\left|x+2\right|=5\)

Chia 2 trường hợp:

\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)

Vậy \(x\in\left\{3;-7\right\}\)

Hơi vội, sai thì thôi nhé!

14 tháng 10 2018

a) Ta thấy: \(183\equiv3\left(mod9\right)\)\(9a⋮9\) nên \(3^a\equiv3\left(mod9\right)\). Do đó \(3^a⋮̸9\Rightarrow a< 2\Rightarrow a\in\left\{0;1\right\}\). Nhưng nếu a = 0 thì 3a = 1, mà 1 lại chia 9 dư 1, vô lí. Do đó a = 1 \(\Rightarrow9b=180\Rightarrow b=20\in N\).