K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  

2 tháng 5 2019

24 tháng 2 2018

A(x) chia cho B(x) có số dư bằng 2 nên 102 – 5m = 2 ⇒ -5m = 100

⇒ m = 20

28 tháng 4 2017

Thực hiện phép chia:

Giải bài 74 trang 32 Toán 8 Tập 1 | Giải bài tập Toán 8

2x3 – 3x2 + x + a chia hết cho x + 2

⇔ số dư = a – 30 = 0

⇔ a = 30.

Cách 2: Phân tích 2x3 – 3x2 + x + a thành nhân tử có chứa x + 2.

2x3 – 3x2 + x + a

= 2x3 + 4x2 – 7x2 – 14x + 15x + 30 + a – 30

(Tách -3x2 = 4x2 – 7x2; x = -14x + 15x)

= 2x2(x + 2) – 7x(x + 2) + 15(x + 2) + a – 30

= (2x2 – 7x + 15)(x + 2) + a – 30

2x3 – 3x2 + x + a chia hết cho x + 2 ⇔ a – 30 = 0 ⇔ a = 30.

5 tháng 8 2023

Số dư của phép chia đa thức \(\text{f( x ) = 2x^3 - 3x^2 + x + a}\) cho \(\text{x + 2}\) là

\(\text{f ( -2 ) = 2(-2) ^3 - 3 (-2 )^2 + ( - 2 ) + a = -30 + a}\)

Để phép chia là chia hết thì số dư bằng \(\text{0}\)

Hay \(\text{-30 + a = 0}\) \(\Rightarrow\) \(\text{a = 30}\)

 

5 tháng 8 2023

a = 30

9 tháng 5 2018

Đa thức \(f\left(x\right)=2x^3-3x^2+x+a\)    chia hết cho đa thức  \(x+2\)

\(\Leftrightarrow\)\(f\left(-2\right)=0\)

\(\Leftrightarrow\)\(2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a=0\)

\(\Leftrightarrow\)\(-30+a=0\)

\(\Leftrightarrow\)\(a=30\)

Vậy  \(a=30\)thì   \(2x^3-3x^2+x+a\)chia hết cho  \(x+2\)

p/s:  bn có thế lm theo cách truyền thống:  đặt tính chia ra rồi đặt dư = 0 và tìm a

      hoặc dùng hệ số bất định 

9 tháng 5 2018

2x^3-3x^2+x+a  |  x+2

------------------|-------------

2x^3-3x^2        | 2x^2-7x+15

2x^2+4x^2

      -7x^2+x

      -7x^2-14x

            15x+a

            15x+30

\(2x^3-3x^2+x+a\div x+2\)

Để đa thức \(2x^3+3x^2+x+a⋮x+2\)

\(\Rightarrow15x+a=15x+30\)

\(\Rightarrow a-30=0\Rightarrow a=30\)

9 tháng 3 2016

Ban co the bi sai de nhe aban oi dung phai la x^2+ax-15 moi dung chu

9 tháng 3 2016

xl bn nha.v bn giúp mk câu này nhek??

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)